BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19260216)

  • 1. Investigation of microbes in the rhizosphere of selected trees for the rhizoremediation of hydrocarbon-contaminated soils.
    Yateem A; Al-Sharrah T; Bin-Haji A
    Int J Phytoremediation; 2008; 10():311-24. PubMed ID: 19260216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arbuscular mycorrhiza and petroleum-degrading microorganisms enhance phytoremediation of petroleum-contaminated soil.
    Alarcón A; Davies FT; Autenrieth RL; Zuberer DA
    Int J Phytoremediation; 2008; 10():251-63. PubMed ID: 19260211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils.
    Mohsenzadeh F; Nasseri S; Mesdaghinia A; Nabizadeh R; Zafari D; Khodakaramian G; Chehregani A
    Ecotoxicol Environ Saf; 2010 May; 73(4):613-9. PubMed ID: 19932506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Petroleum hydrocarbon biodegradation under seasonal freeze-thaw soil temperature regimes in contaminated soils from a sub-Arctic site.
    Chang W; Klemm S; Beaulieu C; Hawari J; Whyte L; Ghoshal S
    Environ Sci Technol; 2011 Feb; 45(3):1061-6. PubMed ID: 21194195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening of Australian native grasses for rhizoremediation of aliphatic hydrocarbon-contaminated soil.
    Gaskin S; Soole K; Bentham R
    Int J Phytoremediation; 2008; 10(5):378-89. PubMed ID: 19260221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons.
    Cook RL; Hesterberg D
    Int J Phytoremediation; 2013; 15(9):844-60. PubMed ID: 23819280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant.
    Jones RK; Sun WH; Tang CS; Robert FM
    Environ Sci Pollut Res Int; 2004; 11(5):340-6. PubMed ID: 15506638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial rhizosphere and endosphere populations associated with grasses and trees to be used for phytoremediation of crude oil contaminated soil.
    Fatima K; Afzal M; Imran A; Khan QM
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):314-20. PubMed ID: 25661008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhizosphere microflora of plants used for the phytoremediation of bitumen-contaminated soil.
    Muratova A; Hübner T; Narula N; Wand H; Turkovskaya O; Kuschk P; Jahn R; Merbach W
    Microbiol Res; 2003; 158(2):151-61. PubMed ID: 12906388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses.
    Gaskin SE; Bentham RH
    Sci Total Environ; 2010 Aug; 408(17):3683-8. PubMed ID: 20569970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced phytoremediation of arsenic contaminated land.
    Jankong P; Visoottiviseth P; Khokiattiwong S
    Chemosphere; 2007 Aug; 68(10):1906-12. PubMed ID: 17416405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of nickel on the mineralization of hydrocarbons by indigenous microbiota in Kuwait soils.
    Al-Saleh ES; Obuekwe C
    J Basic Microbiol; 2009 Jun; 49(3):256-63. PubMed ID: 19219899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of crude oil in the rhizosphere of Sorghum bicolor.
    Banks MK; Kulakow P; Schwab AP; Chen Z; Rathbone K
    Int J Phytoremediation; 2003; 5(3):225-34. PubMed ID: 14750430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of copper-tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens.
    Chen YX; Wang YP; Lin Q; Luo YM
    Environ Int; 2005 Aug; 31(6):861-6. PubMed ID: 16005516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoremediation of polychlorinated biphenyl-contaminated soils: the rhizosphere effect.
    Chekol T; Vough LR; Chaney RL
    Environ Int; 2004 Aug; 30(6):799-804. PubMed ID: 15120198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant tolerance to diesel minimizes its impact on soil microbial characteristics during rhizoremediation of diesel-contaminated soils.
    Barrutia O; Garbisu C; Epelde L; Sampedro MC; Goicolea MA; Becerril JM
    Sci Total Environ; 2011 Sep; 409(19):4087-93. PubMed ID: 21741073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Petroleum-degrading microbial numbers in rhizosphere and non-rhizosphere crude oil-contaminated soil.
    Kirkpatrick WD; White PM; Wolf DC; Thoma GJ; Reynolds CM
    Int J Phytoremediation; 2008; 10(3):208-19. PubMed ID: 18710096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and biological properties in the rhizosphere of Lupinus albus alter soil heavy metal fractionation.
    Martínez-Alcalá I; Walker DJ; Bernal MP
    Ecotoxicol Environ Saf; 2010 May; 73(4):595-602. PubMed ID: 20060590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remediation of petroleum contaminated soils through composting and rhizosphere degradation.
    Wang Z; Xu Y; Zhao J; Li F; Gao D; Xing B
    J Hazard Mater; 2011 Jun; 190(1-3):677-85. PubMed ID: 21524845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of Maya crude oil fractions by bacterial strains and a defined mixed culture isolated from Cyperus laxus rhizosphere soil in a contaminated site.
    Díaz-Ramírez IJ; Ramírez-Saad H; Gutiérrez-Rojas M; Favela-Torres E
    Can J Microbiol; 2003 Dec; 49(12):755-61. PubMed ID: 15162200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.