BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19260216)

  • 21. Biodegradation of semi- and non-volatile petroleum hydrocarbons in aged, contaminated soils from a sub-Arctic site: laboratory pilot-scale experiments at site temperatures.
    Chang W; Dyen M; Spagnuolo L; Simon P; Whyte L; Ghoshal S
    Chemosphere; 2010 Jun; 80(3):319-26. PubMed ID: 20471057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. From oil spills to barley growth - oil-degrading soil bacteria and their promoting effects.
    Mikolasch A; Reinhard A; Alimbetova A; Omirbekova A; Pasler L; Schumann P; Kabisch J; Mukasheva T; Schauer F
    J Basic Microbiol; 2016 Nov; 56(11):1252-1273. PubMed ID: 27624187
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of diesel-originated pollutants in wetlands by Scirpus triqueter and microorganisms.
    Liu X; Wang Z; Zhang X; Wang J; Xu G; Cao Z; Zhong C; Su P
    Ecotoxicol Environ Saf; 2011 Oct; 74(7):1967-72. PubMed ID: 21700339
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions.
    Martin BC; George SJ; Price CA; Ryan MH; Tibbett M
    Sci Total Environ; 2014 Feb; 472():642-53. PubMed ID: 24317170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relationship between soil microbial diversity and bioremediation process at an oil refinery.
    Płaza G; Ulfig K; Brigmon RL
    Acta Microbiol Pol; 2003; 52(2):173-82. PubMed ID: 14594404
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Remediation of petroleum contaminated soils by joint action of Pharbitis nil L. and its microbial community.
    Zhang Z; Zhou Q; Peng S; Cai Z
    Sci Total Environ; 2010 Oct; 408(22):5600-5. PubMed ID: 20810149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioremediation of oil-contaminated soil using Candida catenulata and food waste.
    Joo HS; Ndegwa PM; Shoda M; Phae CG
    Environ Pollut; 2008 Dec; 156(3):891-6. PubMed ID: 18620787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of the intrinsic methyl tert-butyl ether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems.
    Moreels D; Bastiaens L; Ollevier F; Merckx R; Diels L; Springael D
    FEMS Microbiol Ecol; 2004 Jul; 49(1):121-8. PubMed ID: 19712389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of nutrients addition and bioaugmentation on the hydrocarbon biodegradation of a chronically contaminated Antarctic soil.
    Ruberto L; Dias R; Lo Balbo A; Vazquez SC; Hernandez EA; Mac Cormack WP
    J Appl Microbiol; 2009 Apr; 106(4):1101-10. PubMed ID: 19191978
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improvement of natural microbial remediation of petroleum-polluted soil using graminaceous plants.
    Zhang ZZ; Su SM; Luo YJ; Lu M
    Water Sci Technol; 2009; 59(5):1025-35. PubMed ID: 19273903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arbuscular mycorrhizal fungi in chronically petroleum-contaminated soils in Mexico and the effects of petroleum hydrocarbons on spore germination.
    Franco-Ramírez A; Ferrera-Cerrato R; Varela-Fregoso L; Pérez-Moreno J; Alarcón A
    J Basic Microbiol; 2007 Oct; 47(5):378-83. PubMed ID: 17910101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phytoremediation of abandoned crude oil contaminated drill sites of Assam with the aid of a hydrocarbon-degrading bacterial formulation.
    Yenn R; Borah M; Boruah HP; Roy AS; Baruah R; Saikia N; Sahu OP; Tamuli AK
    Int J Phytoremediation; 2014; 16(7-12):909-25. PubMed ID: 24933892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhizodegradation of petroleum hydrocarbons by Sesbania cannabina in bioaugmented soil with free and immobilized consortium.
    Maqbool F; Wang Z; Xu Y; Zhao J; Gao D; Zhao YG; Bhatti ZA; Xing B
    J Hazard Mater; 2012 Oct; 237-238():262-9. PubMed ID: 22975255
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rhizosphere remediation of chlorpyrifos in mycorrhizospheric soil using ryegrass.
    Korade DL; Fulekar MH
    J Hazard Mater; 2009 Dec; 172(2-3):1344-50. PubMed ID: 19720454
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inoculum pretreatment affects bacterial survival, activity and catabolic gene expression during phytoremediation of diesel contaminated soil.
    Khan S; Afzal M; Iqbal S; Mirza MS; Khan QM
    Chemosphere; 2013 Apr; 91(5):663-8. PubMed ID: 23399305
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Metabolic and phylogenetic analysis of microbial communities during phytoremediation of soil contaminated with weathered hydrocarbons and heavy metals.
    Palmroth MR; Koskinen PE; Kaksonen AH; Münster U; Pichtel J; Puhakka JA
    Biodegradation; 2007 Dec; 18(6):769-82. PubMed ID: 17372705
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced crude oil biodegradation in soil via biostimulation.
    Al-Saleh E; Hassan A
    Int J Phytoremediation; 2016 Aug; 18(8):822-31. PubMed ID: 26854134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic diversity of culturable bacteria in oil-contaminated rhizosphere of Galega orientalis.
    Jussila MM; Jurgens G; Lindström K; Suominen L
    Environ Pollut; 2006 Jan; 139(2):244-57. PubMed ID: 16055251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals.
    Rajkumar M; Vara Prasad MN; Freitas H; Ae N
    Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.
    Tara N; Afzal M; Ansari TM; Tahseen R; Iqbal S; Khan QM
    Int J Phytoremediation; 2014; 16(7-12):1268-77. PubMed ID: 24933917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.