These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 19260217)
1. Potential of Sonchus arvensis for the phytoremediation of lead-contaminated soil. Surat W; Kruatrachue M; Pokethitiyook P; Tanhan P; Samranwanich T Int J Phytoremediation; 2008; 10():325-42. PubMed ID: 19260217 [TBL] [Abstract][Full Text] [Related]
2. Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: a glasshouse study. Rotkittikhun P; Chaiyarat R; Kruatrachue M; Pokethitiyook P; Baker AJ Chemosphere; 2007 Jan; 66(1):45-53. PubMed ID: 16828842 [TBL] [Abstract][Full Text] [Related]
3. Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Rotkittikhun P; Kruatrachue M; Chaiyarat R; Ngernsansaruay C; Pokethitiyook P; Paijitprapaporn A; Baker AJ Environ Pollut; 2006 Nov; 144(2):681-8. PubMed ID: 16533549 [TBL] [Abstract][Full Text] [Related]
4. Effects of soil amendments and EDTA on lead uptake by Chromolaena odorata: greenhouse and field trial experiments. Tanhan P; Pokethitiyook P; Kruatrachue M; Chaiyarat R; Upatham S Int J Phytoremediation; 2011 Oct; 13(9):897-911. PubMed ID: 21972512 [TBL] [Abstract][Full Text] [Related]
5. Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. Saghi A; Rashed Mohassel MH; Parsa M; Hammami H Int J Phytoremediation; 2016; 18(4):387-92. PubMed ID: 26552966 [TBL] [Abstract][Full Text] [Related]
6. Uptake and accumulation of cadmium, lead and zinc by Siam weed [Chromolaena odorata (L.) King & Robinson]. Tanhan P; Kruatrachue M; Pokethitiyook P; Chaiyarat R Chemosphere; 2007 Jun; 68(2):323-9. PubMed ID: 17280700 [TBL] [Abstract][Full Text] [Related]
7. Effects of EDTA on lead uptake by Typha orientalis Presl: a new lead-accumulating species in southern China. Li YL; Liu YG; Liu JL; Zeng GM; Li X Bull Environ Contam Toxicol; 2008 Jul; 81(1):36-41. PubMed ID: 18465067 [TBL] [Abstract][Full Text] [Related]
8. Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. Meeinkuirt W; Pokethitiyook P; Kruatrachue M; Tanhan P; Chaiyarat R Int J Phytoremediation; 2012 Oct; 14(9):925-38. PubMed ID: 22908655 [TBL] [Abstract][Full Text] [Related]
9. Isolation and characterization of lead-tolerant Ochrobactrum intermedium and its role in enhancing lead accumulation by Eucalyptus camaldulensis. Waranusantigul P; Lee H; Kruatrachue M; Pokethitiyook P; Auesukaree C Chemosphere; 2011 Oct; 85(4):584-90. PubMed ID: 21764101 [TBL] [Abstract][Full Text] [Related]
10. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Muhammad D; Chen F; Zhao J; Zhang G; Wu F Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355 [TBL] [Abstract][Full Text] [Related]
11. Phytoextraction of zinc, copper, nickel and lead from a contaminated soil by different species of Brassica. Purakayastha TJ; Viswanath T; Bhadraray S; Chhonkar PK; Adhikari PP; Suribabu K Int J Phytoremediation; 2008; 10(1):61-72. PubMed ID: 18709932 [TBL] [Abstract][Full Text] [Related]
12. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter. López ML; Peralta-Videa JR; Benitez T; Gardea-Torresdey JL Chemosphere; 2005 Oct; 61(4):595-8. PubMed ID: 16202815 [TBL] [Abstract][Full Text] [Related]
13. Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin. Alvarenga P; Palma P; Gonçalves AP; Baião N; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Chemosphere; 2008 Aug; 72(11):1774-81. PubMed ID: 18547605 [TBL] [Abstract][Full Text] [Related]
14. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study. Li H; Wang Q; Cui Y; Dong Y; Christie P Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768 [TBL] [Abstract][Full Text] [Related]
15. Influences of major nutrient elements on Pb accumulation of two crops from a Pb-contaminated soil. Lin C; Zhu T; Liu L; Wang D J Hazard Mater; 2010 Feb; 174(1-3):202-8. PubMed ID: 19854574 [TBL] [Abstract][Full Text] [Related]
16. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
17. The role of root damage in the chelate-enhanced accumulation of lead by Indian mustard plants. Luo C; Shen Z; Li X; Baker AJ Int J Phytoremediation; 2006; 8(4):323-37. PubMed ID: 17305306 [TBL] [Abstract][Full Text] [Related]
18. Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Yanqun Z; Yuan L; Jianjun C; Haiyan C; Li Q; Schvartz C Environ Int; 2005 Jul; 31(5):755-62. PubMed ID: 15910971 [TBL] [Abstract][Full Text] [Related]
19. Lead uptake and translocation by willows in pot and field experiments. Zhivotovsky OP; Kuzovkina YA; Schulthess CP; Morris T; Pettinelli D Int J Phytoremediation; 2011 Sep; 13(8):731-49. PubMed ID: 21972515 [TBL] [Abstract][Full Text] [Related]
20. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies? Zabłudowska E; Kowalska J; Jedynak L; Wojas S; Skłodowska A; Antosiewicz DM Chemosphere; 2009 Oct; 77(3):301-7. PubMed ID: 19733893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]