These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19260668)

  • 1. Retardation of ice crystallization by short peptides.
    Kim JS; Damodaran S; Yethiraj A
    J Phys Chem A; 2009 Apr; 113(16):4403-7. PubMed ID: 19260668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New simulation model of multicomponent crystal growth and inhibition.
    Wathen B; Kuiper M; Walker V; Jia Z
    Chemistry; 2004 Apr; 10(7):1598-605. PubMed ID: 15054746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational properties of the Pro-Gly motif in the D-Ala-l-Pro-Gly-D-Ala model peptide explored by a statistical analysis of the NMR, Raman, and Raman optical activity spectra.
    Budesínský M; Sebestík J; Bednarova L; Baumruk V; Safarík M; Bour P
    J Org Chem; 2008 Feb; 73(4):1481-9. PubMed ID: 18205382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of annealing time of an ice crystal on the activity of type III antifreeze protein.
    Takamichi M; Nishimiya Y; Miura A; Tsuda S
    FEBS J; 2007 Dec; 274(24):6469-76. PubMed ID: 18028424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A part of ice nucleation protein exhibits the ice-binding ability.
    Kobashigawa Y; Nishimiya Y; Miura K; Ohgiya S; Miura A; Tsuda S
    FEBS Lett; 2005 Feb; 579(6):1493-7. PubMed ID: 15733862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of ice crystal growth in ice cream mix by gelatin hydrolysate.
    Damodaran S
    J Agric Food Chem; 2007 Dec; 55(26):10918-23. PubMed ID: 18044830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apparatus for single ice crystal growth from the melt.
    Zepeda S; Nakatsubo S; Furukawa Y
    Rev Sci Instrum; 2009 Nov; 80(11):115102. PubMed ID: 19947752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations.
    Nutt DR; Smith JC
    J Am Chem Soc; 2008 Oct; 130(39):13066-73. PubMed ID: 18774821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics methodology to investigate steady-state heterogeneous crystal growth.
    Vatamanu J; Kusalik PG
    J Chem Phys; 2007 Mar; 126(12):124703. PubMed ID: 17411148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of ice-like water structure on the surface of an antifreeze protein.
    Smolin N; Daggett V
    J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new model for simulating 3-d crystal growth and its application to the study of antifreeze proteins.
    Wathen B; Kuiper M; Walker V; Jia Z
    J Am Chem Soc; 2003 Jan; 125(3):729-37. PubMed ID: 12526672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of ice crystal growth by synthetic glycopolymers: implications for the rational design of antifreeze glycoprotein mimics.
    Gibson MI; Barker CA; Spain SG; Albertin L; Cameron NR
    Biomacromolecules; 2009 Feb; 10(2):328-33. PubMed ID: 19072300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of [La(peptide)]3+ complexes in the gas phase: determination of the number of binding sites provided by dipeptide, tripeptide, and tetrapeptide ligands.
    Shi T; Siu KW; Hopkinson AC
    J Phys Chem A; 2007 Nov; 111(45):11562-71. PubMed ID: 17949063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth inhibition mechanism of an ice-water interface by a mutant of winter flounder antifreeze protein: a molecular dynamics study.
    Nada H; Furukawa Y
    J Phys Chem B; 2008 Jun; 112(23):7111-9. PubMed ID: 18476736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of glycine crystal-solution interface.
    Banerjee S; Briesen H
    J Chem Phys; 2009 Nov; 131(18):184705. PubMed ID: 19916621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformation of alloHyp in the Y position in the host-guest peptide with the pro-pro-gly sequence: implication of the destabilization of (Pro-alloHyp-Gly)10.
    Jiravanichanun N; Nishino N; Okuyama K
    Biopolymers; 2006 Feb; 81(3):225-33. PubMed ID: 16273514
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homochiral oligopeptides via surface recognition and enantiomeric cross impediment in the polymerization of racemic phenylalanine N-carboxyanhydride crystals suspended in water.
    Nery JG; Eliash R; Bolbach G; Weissbuch I; Lahav M
    Chirality; 2007 Aug; 19(8):612-24. PubMed ID: 17354263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ice surface reconstruction as antifreeze protein-induced morphological modification mechanism.
    Strom CS; Liu XY; Jia Z
    J Am Chem Soc; 2005 Jan; 127(1):428-40. PubMed ID: 15631494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of salt on the melting of ice: A molecular dynamics simulation study.
    Kim JS; Yethiraj A
    J Chem Phys; 2008 Sep; 129(12):124504. PubMed ID: 19045033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ice-structuring peptides derived from bovine collagen.
    Wang S; Damodaran S
    J Agric Food Chem; 2009 Jun; 57(12):5501-9. PubMed ID: 19480387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.