These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19261183)

  • 21. Evolutionarily conserved pathways of energetic connectivity in protein families.
    Lockless SW; Ranganathan R
    Science; 1999 Oct; 286(5438):295-9. PubMed ID: 10514373
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Environment-specific amino acid substitution tables: tertiary templates and prediction of protein folds.
    Overington J; Donnelly D; Johnson MS; Sali A; Blundell TL
    Protein Sci; 1992 Feb; 1(2):216-26. PubMed ID: 1304904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Underlying hydrophobic sequence periodicity of protein tertiary structure.
    Silverman BD
    J Biomol Struct Dyn; 2005 Feb; 22(4):411-23. PubMed ID: 15588105
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting residue-wise contact orders in proteins by support vector regression.
    Song J; Burrage K
    BMC Bioinformatics; 2006 Oct; 7():425. PubMed ID: 17014735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction of the protein folding core: application to the immunoglobulin fold.
    Prudhomme N; Chomilier J
    Biochimie; 2009; 91(11-12):1465-74. PubMed ID: 19665046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The ω-transaminase engineering database (oTAED): A navigation tool in protein sequence and structure space.
    Buß O; Buchholz PCF; Gräff M; Klausmann P; Rudat J; Pleiss J
    Proteins; 2018 May; 86(5):566-580. PubMed ID: 29423963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Are knowledge-based potentials derived from protein structure sets discriminative with respect to amino acid types?
    Sunyaev SR; Eisenhaber F; Argos P; Kuznetsov EN; Tumanyan VG
    Proteins; 1998 May; 31(3):225-46. PubMed ID: 9593195
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence patterns derived from the automated prediction of functional residues in structurally-aligned homologous protein families.
    Miguel RN
    Bioinformatics; 2004 Oct; 20(15):2380-9. PubMed ID: 15073006
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantum coupled mutation finder: predicting functionally or structurally important sites in proteins using quantum Jensen-Shannon divergence and CUDA programming.
    Gültas M; Düzgün G; Herzog S; Jäger SJ; Meckbach C; Wingender E; Waack S
    BMC Bioinformatics; 2014 Apr; 15():96. PubMed ID: 24694117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence and structural analysis of cellular retinoic acid-binding proteins reveals a network of conserved hydrophobic interactions.
    Gunasekaran K; Hagler AT; Gierasch LM
    Proteins; 2004 Feb; 54(2):179-94. PubMed ID: 14696180
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Statistical and molecular dynamics studies of buried waters in globular proteins.
    Park S; Saven JG
    Proteins; 2005 Aug; 60(3):450-63. PubMed ID: 15937899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary models of amino acid substitutions based on the tertiary structure of their neighborhoods.
    Primetis E; Chavlis S; Pavlidis P
    Proteins; 2021 Nov; 89(11):1565-1576. PubMed ID: 34278605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A functional role for protein cavities in domain: domain motions.
    Hubbard SJ; Argos P
    J Mol Biol; 1996 Aug; 261(2):289-300. PubMed ID: 8757295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sequence based residue depth prediction using evolutionary information and predicted secondary structure.
    Zhang H; Zhang T; Chen K; Shen S; Ruan J; Kurgan L
    BMC Bioinformatics; 2008 Sep; 9():388. PubMed ID: 18803867
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Threading with chemostructural restrictions method for predicting fold and functionally significant residues: application to dipeptidylpeptidase IV (DPP-IV).
    Reva B; Finkelstein A; Topiol S
    Proteins; 2002 May; 47(2):180-93. PubMed ID: 11933065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequence coevolution between RNA and protein characterized by mutual information between residue triplets.
    Brandman R; Brandman Y; Pande VS
    PLoS One; 2012; 7(1):e30022. PubMed ID: 22279560
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A procedure for the automatic determination of hydrophobic cores in protein structures.
    Swindells MB
    Protein Sci; 1995 Jan; 4(1):93-102. PubMed ID: 7773181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein evolution and protein folding: non-functional conserved residues and their probable role.
    Ptitsyn OB
    Pac Symp Biocomput; 1999; ():494-504. PubMed ID: 10380222
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of the sequence data deluge on the performance of methods for detecting protein functional residues.
    Garrido-Martín D; Pazos F
    BMC Bioinformatics; 2018 Feb; 19(1):67. PubMed ID: 29482506
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A strategy for detecting the conservation of folding-nucleus residues in protein superfamilies.
    Michnick SW; Shakhnovich E
    Fold Des; 1998; 3(4):239-51. PubMed ID: 9710570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.