These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 19261282)

  • 1. Accuracy of a CT-based bone contour registration method to measure relative bone motions in the hindfoot.
    Tuijthof GJ; Beimers L; Jonges R; Valstar ER; Blankevoort L
    J Biomech; 2009 Apr; 42(6):686-91. PubMed ID: 19261282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-vivo range of motion of the subtalar joint using computed tomography.
    Beimers L; Tuijthof GJ; Blankevoort L; Jonges R; Maas M; van Dijk CN
    J Biomech; 2008; 41(7):1390-7. PubMed ID: 18405904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of consistent patterns of range of motion in the ankle joint with a computed tomography stress-test.
    Tuijthof GJ; Zengerink M; Beimers L; Jonges R; Maas M; van Dijk CN; Blankevoort L
    Clin Biomech (Bristol, Avon); 2009 Jul; 24(6):517-23. PubMed ID: 19356831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of subtalar joint axis location by restriction of talocrural joint motion.
    Lewis GS; Kirby KA; Piazza SJ
    Gait Posture; 2007 Jan; 25(1):63-9. PubMed ID: 16472526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hindfoot coronal alignment: a modified radiographic method.
    Johnson JE; Lamdan R; Granberry WF; Harris GF; Carrera GF
    Foot Ankle Int; 1999 Dec; 20(12):818-25. PubMed ID: 10609713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional kinematic change of hindfoot during full weightbearing in standing: an analysis using upright computed tomography and 3D-3D surface registration.
    Kaneda K; Harato K; Oki S; Ota T; Yamada Y; Yamada M; Matsumoto M; Nakamura M; Nagura T; Jinzaki M
    J Orthop Surg Res; 2019 Nov; 14(1):355. PubMed ID: 31711523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro assessment of a motion-based optimization method for locating the talocrural and subtalar joint axes.
    Lewis GS; Sommer HJ; Piazza SJ
    J Biomech Eng; 2006 Aug; 128(4):596-603. PubMed ID: 16813451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying skin motion artifact error of the hindfoot and forefoot marker clusters with the optical tracking of a multi-segment foot model using single-plane fluoroscopy.
    Shultz R; Kedgley AE; Jenkyn TR
    Gait Posture; 2011 May; 34(1):44-8. PubMed ID: 21498078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Centre of Rotation of the Human Subtalar Joint Using Weight-Bearing Clinical Computed Tomography.
    Peña Fernández M; Hoxha D; Chan O; Mordecai S; Blunn GW; Tozzi G; Goldberg A
    Sci Rep; 2020 Jan; 10(1):1035. PubMed ID: 31974489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Markerless Roentgen Stereophotogrammetric Analysis for in vivo implant migration measurement using three dimensional surface models to represent bone.
    Seehaus F; Olender GD; Kaptein BL; Ostermeier S; Hurschler C
    J Biomech; 2012 May; 45(8):1540-5. PubMed ID: 22465625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CT-based radiostereometric analysis for assessing midfoot kinematics: precision compared with marker-based radiostereometry.
    Poulsen M; Stødle AH; Nordsletten L; Röhrl SM
    Acta Orthop; 2023 Jul; 94():366-372. PubMed ID: 37493528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Passive motion characteristics of the talocrural and the subtalar joint by dual Euler angles.
    Wong Y; Kim W; Ying N
    J Biomech; 2005 Dec; 38(12):2480-5. PubMed ID: 16214496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.
    de Bruin PW; Kaptein BL; Stoel BC; Reiber JH; Rozing PM; Valstar ER
    J Biomech; 2008; 41(1):155-64. PubMed ID: 17706656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Six DOF in vivo kinematics of the ankle joint complex: Application of a combined dual-orthogonal fluoroscopic and magnetic resonance imaging technique.
    de Asla RJ; Wan L; Rubash HE; Li G
    J Orthop Res; 2006 May; 24(5):1019-27. PubMed ID: 16609963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relative motions of the tibia, talus, and calcaneus during the stance phase of gait: a cadaver study.
    Hamel AJ; Sharkey NA; Buczek FL; Michelson J
    Gait Posture; 2004 Oct; 20(2):147-53. PubMed ID: 15336284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sagittal Fluoroscopy for the Assessment of Hindfoot Kinematics.
    McHenry BD; Exten E; Long JT; Harris GF
    J Biomech Eng; 2016 Mar; 138(3):4032445. PubMed ID: 26746901
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carpal bone kinematics in combined wrist joint motions may differ from the bone kinematics during simple wrist motions.
    Upal MA
    Biomed Sci Instrum; 2003; 39():272-7. PubMed ID: 12724906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of subtalar joint motion during anticipated medial cutting turns and level walking using a multi-segment foot model.
    Jenkyn TR; Shultz R; Giffin JR; Birmingham TB
    Gait Posture; 2010 Feb; 31(2):153-8. PubMed ID: 19897368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of a biocompatible fiducial marker in evaluating the accuracy of computed tomography image registration.
    Ellis R; Toksvig-Larsen S; Marcacci M; Caramella D; Fadda M
    Invest Radiol; 1996 Oct; 31(10):658-67. PubMed ID: 8889655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculating the axes of rotation for the subtalar and talocrural joints using 3D bone reconstructions.
    Parr WC; Chatterjee HJ; Soligo C
    J Biomech; 2012 Apr; 45(6):1103-7. PubMed ID: 22284429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.