These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 19261283)

  • 1. In situ mechanical properties of the chondrocyte cytoplasm and nucleus.
    Ofek G; Natoli RM; Athanasiou KA
    J Biomech; 2009 May; 42(7):873-7. PubMed ID: 19261283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the Poisson's ratio of the cell: recovery properties of chondrocytes after release from complete micropipette aspiration.
    Trickey WR; Baaijens FP; Laursen TA; Alexopoulos LG; Guilak F
    J Biomech; 2006; 39(1):78-87. PubMed ID: 16271590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large deformation finite element analysis of micropipette aspiration to determine the mechanical properties of the chondrocyte.
    Baaijens FP; Trickey WR; Laursen TA; Guilak F
    Ann Biomed Eng; 2005 Apr; 33(4):494-501. PubMed ID: 15909655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2010 Mar; 132(3):031011. PubMed ID: 20459199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image-derived modeling of nucleus strain amplification associated with chromatin heterogeneity.
    Reynolds N; McEvoy E; Ghosh S; Panadero PĂ©rez JA; Neu CP; McGarry P
    Biophys J; 2021 Apr; 120(8):1323-1332. PubMed ID: 33675762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical properties of single chondrocytes and chondrons determined by micromanipulation and finite-element modelling.
    Nguyen BV; Wang QG; Kuiper NJ; El Haj AJ; Thomas CR; Zhang Z
    J R Soc Interface; 2010 Dec; 7(53):1723-33. PubMed ID: 20519215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The deformation behavior and mechanical properties of chondrocytes in articular cartilage.
    Guilak F; Jones WR; Ting-Beall HP; Lee GM
    Osteoarthritis Cartilage; 1999 Jan; 7(1):59-70. PubMed ID: 10367015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests.
    Wu JZ; Herzog W
    Ann Biomed Eng; 2000 Mar; 28(3):318-30. PubMed ID: 10784096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of the fixed negative charges on mechanical and electrical behaviors of articular cartilage under unconfined compression.
    Sun DD; Guo XE; Likhitpanichkul M; Lai WM; Mow VC
    J Biomech Eng; 2004 Feb; 126(1):6-16. PubMed ID: 15171124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compression regulates gene expression of chondrocytes through HDAC4 nuclear relocation via PP2A-dependent HDAC4 dephosphorylation.
    Chen C; Wei X; Wang S; Jiao Q; Zhang Y; Du G; Wang X; Wei F; Zhang J; Wei L
    Biochim Biophys Acta; 2016 Jul; 1863(7 Pt A):1633-42. PubMed ID: 27106144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanics of single zonal chondrocytes.
    Shieh AC; Athanasiou KA
    J Biomech; 2006; 39(9):1595-602. PubMed ID: 15992803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanics and deformation of the nucleus in micropipette aspiration experiment.
    Vaziri A; Mofrad MR
    J Biomech; 2007; 40(9):2053-62. PubMed ID: 17112531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite Element Modelling of Single Cell Based on Atomic Force Microscope Indentation Method.
    Wang L; Wang L; Xu L; Chen W
    Comput Math Methods Med; 2019; 2019():7895061. PubMed ID: 31933677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic properties of the cell nucleus.
    Guilak F; Tedrow JR; Burgkart R
    Biochem Biophys Res Commun; 2000 Mar; 269(3):781-6. PubMed ID: 10720492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of the nucleus to the mechanical properties of endothelial cells.
    Caille N; Thoumine O; Tardy Y; Meister JJ
    J Biomech; 2002 Feb; 35(2):177-87. PubMed ID: 11784536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compression-induced changes in the shape and volume of the chondrocyte nucleus.
    Guilak F
    J Biomech; 1995 Dec; 28(12):1529-41. PubMed ID: 8666592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelastic properties of zonal articular chondrocytes measured by atomic force microscopy.
    Darling EM; Zauscher S; Guilak F
    Osteoarthritis Cartilage; 2006 Jun; 14(6):571-9. PubMed ID: 16478668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unconfined creep compression of chondrocytes.
    Leipzig ND; Athanasiou KA
    J Biomech; 2005 Jan; 38(1):77-85. PubMed ID: 15519342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage.
    Guilak F
    Biorheology; 2000; 37(1-2):27-44. PubMed ID: 10912176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In the middle of it all: mutual mechanical regulation between the nucleus and the cytoskeleton.
    Dahl KN; Booth-Gauthier EA; Ladoux B
    J Biomech; 2010 Jan; 43(1):2-8. PubMed ID: 19804886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.