These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 19261321)

  • 21. Pyrochars and hydrochars differently alter the sorption of the herbicide isoproturon in an agricultural soil.
    Eibisch N; Schroll R; Fuß R; Mikutta R; Helfrich M; Flessa H
    Chemosphere; 2015 Jan; 119():155-162. PubMed ID: 24974225
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of a NAPL on the loss and biodegradation of 14C-phenanthrene residues in two dissimilar soils.
    Swindell AL; Reid BJ
    Chemosphere; 2007 Jan; 66(2):332-9. PubMed ID: 16766015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Laboratory degradation studies of 14C-atrazine and -isoproturon in soil from sugarcane cultivated fields under Kenyan tropical conditions.
    Getenga ZM; Dörfler U; Schroll R
    Bull Environ Contam Toxicol; 2009 Jun; 82(6):678-82. PubMed ID: 19277444
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil?
    Semple KT; Dew NM; Doick KJ; Rhodes AH
    Environ Pollut; 2006 Mar; 140(1):164-72. PubMed ID: 16112779
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intrinsic and induced isoproturon catabolic activity in dissimilar soils and soils under dissimilar land use.
    Reid BJ; Papanikolaou ND; Wilcox RK
    Environ Pollut; 2005 Feb; 133(3):447-54. PubMed ID: 15519720
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation and release of non-extractable 14C-Dicamba residues in soil under sterile and non-sterile regimes.
    Gevao B; Jones KC; Semple KT
    Environ Pollut; 2005 Jan; 133(1):17-24. PubMed ID: 15327852
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters.
    El Sebai T; Lagacherie B; Soulas G; Martin-Laurent F
    Environ Pollut; 2007 Feb; 145(3):680-90. PubMed ID: 16979806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting isoproturon long-term mineralization from short-term experiment: Can this be a suitable approach?
    Wang F; Dörfler U; Jiang X; Schroll R
    Chemosphere; 2016 Feb; 144():312-8. PubMed ID: 26366929
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Field-scale variation in microbial activity and soil properties in relation to mineralization and sorption of pesticides in a sandy soil.
    Vinther FP; Brinch UC; Elsgaard L; Fredslund L; Iversen BV; Torp S; Jacobsen CS
    J Environ Qual; 2008; 37(5):1710-8. PubMed ID: 18689732
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Influence of kinetic sorption and diffusion on pesticide movement through aggregated soils.
    Beulke S; Brown CD; Fryer CJ; van Beinum W
    Chemosphere; 2004 Nov; 57(6):481-90. PubMed ID: 15350410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced degradation of Herbicide Isoproturon in wheat rhizosphere by salicylic acid.
    Lu YC; Zhang S; Miao SS; Jiang C; Huang MT; Liu Y; Yang H
    J Agric Food Chem; 2015 Jan; 63(1):92-103. PubMed ID: 25495335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetics of extractable residue, bound residue and mineralization of a novel herbicide, ZJ0273, in aerobic soils.
    Wang H; Ye Q; Yue L; Yu Z; Han A; Yang Z; Lu L
    Chemosphere; 2009 Aug; 76(8):1036-40. PubMed ID: 19481777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Application of the Root Zone Water Quality Model (RZWQM) to pesticide fate and transport: an overview.
    Malone RW; Ahuja LR; Ma L; Wauchope RD; Ma Q; Rojas KW
    Pest Manag Sci; 2004 Mar; 60(3):205-21. PubMed ID: 15025234
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reduced plant uptake of pesticides with biochar additions to soil.
    Yu XY; Ying GG; Kookana RS
    Chemosphere; 2009 Jul; 76(5):665-71. PubMed ID: 19419749
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decrease in microbial biomass due to pesticide application/residues in soils under different cropping systems.
    Jha MN; Mishra SK
    Bull Environ Contam Toxicol; 2005 Aug; 75(2):316-23. PubMed ID: 16222504
    [No Abstract]   [Full Text] [Related]  

  • 36. Relationship between dieldrin uptake in cucumber and solvent-extractable residue in soil.
    Sakai M; Seike N; Murano H; Otani T
    J Agric Food Chem; 2009 Dec; 57(23):11261-6. PubMed ID: 19904933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fate and behaviour of phenanthrene in the natural and artificial soils.
    Hofman J; Rhodes A; Semple KT
    Environ Pollut; 2008 Mar; 152(2):468-75. PubMed ID: 17850942
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acceleration of the herbicide isoproturon degradation in wheat by glycosyltransferases and salicylic acid.
    Lu YC; Zhang S; Yang H
    J Hazard Mater; 2015; 283():806-14. PubMed ID: 25464323
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spiking solvent, humidity and their impact on 2,4-D and 2,4-DCP extractability from high humic matter content soils.
    Merini LJ; Cuadrado V; Giulietti AM
    Chemosphere; 2008 May; 71(11):2168-72. PubMed ID: 18275981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradation of trifluralin in Harran soil.
    Tiryaki O; Yücel U; Sezen G
    J Environ Sci Health B; 2004; 39(5-6):747-56. PubMed ID: 15620083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.