These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 19261321)
41. Mapping field spatial distribution patterns of isoproturon-mineralizing activity over a three-year winter wheat/rape seed/barley rotation. Hussain S; Devers-Lamrani M; Spor A; Rouard N; Porcherot M; Beguet J; Martin-Laurent F Chemosphere; 2013 Mar; 90(10):2499-511. PubMed ID: 23246724 [TBL] [Abstract][Full Text] [Related]
42. Bioavailability of butachlor and myclobutanil residues in soil to earthworms. Yu YL; Wu XM; Li SN; Fang H; Tan YJ; Yu JQ Chemosphere; 2005 May; 59(7):961-7. PubMed ID: 15823329 [TBL] [Abstract][Full Text] [Related]
43. Inoculation of soil with an Isoproturon degrading microbial community reduced the pool of "real non-extractable" Isoproturon residues. Zhu X; Schroll R; Dörfler U; Chen B Ecotoxicol Environ Saf; 2018 Mar; 149():182-189. PubMed ID: 29175344 [TBL] [Abstract][Full Text] [Related]
44. Evaluation of multi-walled carbon nanotubes as solid-phase extraction adsorbents of pesticides from agricultural, ornamental and forestal soils. Asensio-Ramos M; Hernández-Borges J; Borges-Miquel TM; Rodríguez-Delgado MA Anal Chim Acta; 2009 Aug; 647(2):167-76. PubMed ID: 19591701 [TBL] [Abstract][Full Text] [Related]
45. Formation of non-extractable pesticide residues: observations on compound differences, measurement and regulatory issues. Mordaunt CJ; Gevao B; Jones KC; Semple KT Environ Pollut; 2005 Jan; 133(1):25-34. PubMed ID: 15327853 [TBL] [Abstract][Full Text] [Related]
46. Enantioselective analysis and degradation studies of isocarbophos in soils by chiral liquid chromatography-tandem mass spectrometry. Zhang H; Wang X; Zhuang S; Jin N; Wang X; Qian M; Xu H; Qi P; Wang Q; Wang M J Agric Food Chem; 2012 Oct; 60(41):10188-95. PubMed ID: 23009639 [TBL] [Abstract][Full Text] [Related]
47. Degradation and movement in soil of the herbicide isoproturon analyzed by a Photosystem II-based biosensor. Malý J; Klem K; Lukavská A; Masojídek J J Environ Qual; 2005; 34(5):1780-8. PubMed ID: 16151230 [TBL] [Abstract][Full Text] [Related]
48. Regional assessment of herbicide sorption and degradation in two sampling years. Gaultier J; Farenhorst A; Cathcart J; Goddard T J Environ Qual; 2008; 37(5):1825-36. PubMed ID: 18689744 [TBL] [Abstract][Full Text] [Related]
49. Microbial aspects of the interaction between soil depth and biodegradation of the herbicide isoproturon. Bending GD; Rodriguez-Cruz MS Chemosphere; 2007 Jan; 66(4):664-71. PubMed ID: 16996107 [TBL] [Abstract][Full Text] [Related]
50. Development of phenanthrene catabolism in natural and artificial soils. Rhodes AH; Hofman J; Semple KT Environ Pollut; 2008 Mar; 152(2):424-30. PubMed ID: 17881102 [TBL] [Abstract][Full Text] [Related]
51. Availability of triazine herbicides in aged soils amended with olive oil mill waste. Cabrera A; Cox L; Koskinen WC; Sadowsky MJ J Agric Food Chem; 2008 Jun; 56(11):4112-9. PubMed ID: 18489114 [TBL] [Abstract][Full Text] [Related]
52. Evidence for 2,4-D mineralisation in Mediterranean soils: impact of moisture content and temperature. Bouseba B; Zertal A; Beguet J; Rouard N; Devers M; Martin C; Martin-Laurent F Pest Manag Sci; 2009 Sep; 65(9):1021-9. PubMed ID: 19479783 [TBL] [Abstract][Full Text] [Related]
53. Researches regarding extractable glyphosate residues from different soils. Alexa E; Lazureanu A; Alda S; Negrea M; Iordanescu O Commun Agric Appl Biol Sci; 2008; 73(4):861-9. PubMed ID: 19226836 [TBL] [Abstract][Full Text] [Related]
54. Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Schroll R; Becher HH; Dörfler U; Gayler S; Grundmann S; Hartmann HP; Ruoss J Environ Sci Technol; 2006 May; 40(10):3305-12. PubMed ID: 16749698 [TBL] [Abstract][Full Text] [Related]
55. Biodegrading Two Pesticide Residues in Paddy Plants and the Environment by a Genetically Engineered Approach. Su XN; Zhang JJ; Liu JT; Zhang N; Ma LY; Lu FF; Chen ZJ; Shi Z; Si WJ; Liu C; Yang H J Agric Food Chem; 2019 May; 67(17):4947-4957. PubMed ID: 30994343 [TBL] [Abstract][Full Text] [Related]
56. Survey of organochlorine pesticides in horticultural soils and there grown Cucurbitaceae. Hilber I; Mäder P; Schulin R; Wyss GS Chemosphere; 2008 Oct; 73(6):954-61. PubMed ID: 18691732 [TBL] [Abstract][Full Text] [Related]
57. Soil metabolism of a new herbicide, [14C]Pyribenzoxim, under flooded conditions. Chang HR; Koo SJ; Kim K; Ro HM; Moon JK; Kim YH; Kim JH J Agric Food Chem; 2007 Jul; 55(15):6206-12. PubMed ID: 17592856 [TBL] [Abstract][Full Text] [Related]
58. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. Turpeinen R; Kairesalo T; Häggblom MM FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345 [TBL] [Abstract][Full Text] [Related]
59. Bioavailability of nonextractable (bound) pesticide residues to earthworms. Gevao B; Mordaunt C; Semple KT; Piearce TG; Jones KC Environ Sci Technol; 2001 Feb; 35(3):501-7. PubMed ID: 11351720 [TBL] [Abstract][Full Text] [Related]
60. Pencycuron application to soils: degradation and effect on microbiological parameters. Pal R; Chakrabarti K; Chakraborty A; Chowdhury A Chemosphere; 2005 Sep; 60(11):1513-22. PubMed ID: 16083758 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]