BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1279 related articles for article (PubMed ID: 19261374)

  • 1. Stress-sensitive nutrient consumption via steady and non-reversing dynamic shear in continuous-flow rotational bioreactors.
    Belfiore LA; Bonani W; Leoni M; Belfiore CJ
    Biophys Chem; 2009 May; 141(2-3):140-52. PubMed ID: 19261374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tubular bioreactor models that include Onsager-Curie scalar cross-phenomena to describe stress-dependent rates of cell proliferation.
    Belfiore LA; Karim MN; Belfiore CJ
    Biophys Chem; 2008 Jun; 135(1-3):41-50. PubMed ID: 18423963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pressure-sensitive nutrient consumption via dynamic normal stress in rotational bioreactors.
    Belfiore LA; Bonani W; Leoni M; Belfiore CJ
    Biophys Chem; 2009 Mar; 140(1-3):99-107. PubMed ID: 19150170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress-sensitive tissue regeneration in viscoelastic biomaterials subjected to modulated tensile strain.
    Belfiore LA; Floren ML; Paulino AT; Belfiore CJ
    Biophys Chem; 2011 Sep; 158(1):1-8. PubMed ID: 21640468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of nutrient supply on cell growth in bioreactor design for tissue engineering of hematopoietic cells.
    Pathi P; Ma T; Locke BR
    Biotechnol Bioeng; 2005 Mar; 89(7):743-58. PubMed ID: 15696509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electric-field-enhanced nutrient consumption in dielectric biomaterials that contain anchorage-dependent cells.
    Belfiore LA; Floren ML; Belfiore CJ
    Biophys Chem; 2012 Feb; 161():8-16. PubMed ID: 22196748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical analysis of engineered cartilage oxygenation: influence of construct thickness and media flow rate.
    Pierre J; Gemmiti CV; Kolambkar YM; Oddou C; Guldberg RE
    Biomech Model Mechanobiol; 2008 Dec; 7(6):497-510. PubMed ID: 17999099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tissue growth in a rotating bioreactor. Part II: fluid flow and nutrient transport problems.
    Cummings LJ; Waters SL
    Math Med Biol; 2007 Jun; 24(2):169-208. PubMed ID: 17043081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of cell growth in tissue-engineering constructs under direct perfusion: Modeling and simulation.
    Chung CA; Chen CW; Chen CP; Tseng CS
    Biotechnol Bioeng; 2007 Aug; 97(6):1603-16. PubMed ID: 17304558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution.
    Lappa M
    Biotechnol Bioeng; 2003 Dec; 84(5):518-32. PubMed ID: 14574686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RWPV bioreactor mass transport: earth-based and in microgravity.
    Begley CM; Kleis SJ
    Biotechnol Bioeng; 2002 Nov; 80(4):465-76. PubMed ID: 12325155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of well and groove microchannel bioreactors for cell culture.
    Korin N; Bransky A; Khoury M; Dinnar U; Levenberg S
    Biotechnol Bioeng; 2009 Mar; 102(4):1222-30. PubMed ID: 18973280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational evaluation of oxygen and shear stress distributions in 3D perfusion culture systems: macro-scale and micro-structured models.
    Cioffi M; Küffer J; Ströbel S; Dubini G; Martin I; Wendt D
    J Biomech; 2008 Oct; 41(14):2918-25. PubMed ID: 18789444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient diffusion and simple nth-order consumption in regenerative tissue and biocatalytic sensors.
    Belfiore LA; Floren ML; Volpato FZ; Paulino AT; Belfiore CJ
    Biophys Chem; 2011 May; 155(2-3):65-73. PubMed ID: 21470767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass transport and shear stress in a microchannel bioreactor: numerical simulation and dynamic similarity.
    Zeng Y; Lee TS; Yu P; Roy P; Low HT
    J Biomech Eng; 2006 Apr; 128(2):185-93. PubMed ID: 16524329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen transport and consumption by suspended cells in microgravity: a multiphase analysis.
    Kwon O; Devarakonda SB; Sankovic JM; Banerjee RK
    Biotechnol Bioeng; 2008 Jan; 99(1):99-107. PubMed ID: 17614322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue growth in a rotating bioreactor. Part I: mechanical stability.
    Waters SL; Cummings LJ; Shakesheff KM; Rose FR
    Math Med Biol; 2006 Dec; 23(4):311-37. PubMed ID: 16777926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview.
    Garcia-Ochoa F; Gomez E
    Biotechnol Adv; 2009; 27(2):153-76. PubMed ID: 19041387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow modelling within a scaffold under the influence of uni-axial and bi-axial bioreactor rotation.
    Singh H; Teoh SH; Low HT; Hutmacher DW
    J Biotechnol; 2005 Sep; 119(2):181-96. PubMed ID: 16081181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic shear stress in parallel-plate flow chambers.
    Bacabac RG; Smit TH; Cowin SC; Van Loon JJ; Nieuwstadt FT; Heethaar R; Klein-Nulend J
    J Biomech; 2005 Jan; 38(1):159-67. PubMed ID: 15519352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 64.