These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19261379)

  • 1. Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry.
    Yang C; Chen Y; Peng P; Li C; Chang X; Wu Y
    J Hazard Mater; 2009 Aug; 167(1-3):835-45. PubMed ID: 19261379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemistry and phase evolution during roasting of toxic thallium-bearing pyrite.
    Lopez-Arce P; Garcia-Guinea J; Garrido F
    Chemosphere; 2017 Aug; 181():447-460. PubMed ID: 28458220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thallium dispersal and contamination in surface sediments from South China and its source identification.
    Liu J; Wang J; Chen Y; Shen CC; Jiang X; Xie X; Chen D; Lippold H; Wang C
    Environ Pollut; 2016 Jun; 213():878-887. PubMed ID: 27038575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper and cobalt recovery from pyrite ashes of a sulphuric acid plant.
    Erust C; Akcil A
    Waste Manag Res; 2016 Jun; 34(6):527-33. PubMed ID: 26987736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Study of symbolic element in roasting slag of pyrite by inductively coupled plasma mass spectrometry].
    Wu YJ; Chen YH; Yang CX; Chang XY; Wang CL; Liang CY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Sep; 31(9):2561-4. PubMed ID: 22097872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The partitioning behavior of trace element and its distribution in the surrounding soil of a cement plant integrated utilization of hazardous wastes.
    Yang Z; Chen Y; Sun Y; Liu L; Zhang Z; Ge X
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):13943-53. PubMed ID: 27040541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on the structural behavior of reduced pyrite ash pellets by XRD and XRF analysis.
    Tugrul N; Derun EM; Piskin MB; Ekerim A
    Waste Manag Res; 2009 May; 27(3):281-7. PubMed ID: 19443647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Composition and risk assessment of roasted pyrite ash from fertiliser production.
    Gabarrón M; Babur O; Soriano-Disla JM; Faz A; Acosta JA
    Chemosphere; 2018 Oct; 209():277-285. PubMed ID: 29933164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant.
    Oliveira ML; Ward CR; Izquierdo M; Sampaio CH; de Brum IA; Kautzmann RM; Sabedot S; Querol X; Silva LF
    Sci Total Environ; 2012 Jul; 430():34-47. PubMed ID: 22613465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect of biogenic Fe
    Panda S; Akcil A; Mishra S; Erust C
    J Hazard Mater; 2017 Mar; 325():59-70. PubMed ID: 27915100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trace elements partitioning during co-firing biomass with lignite in a pilot-scale fluidized bed combustor.
    Gogebakan Z; Selçuk N
    J Hazard Mater; 2009 Mar; 162(2-3):1129-34. PubMed ID: 18621479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Occurrence and volatility of several trace elements in pulverized coal boiler.
    Huang YJ; Jin BS; Zhong ZP; Xiao R; Tang ZY; Ren HF
    J Environ Sci (China); 2004; 16(2):242-6. PubMed ID: 15137647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thallium transformation and partitioning during Pb-Zn smelting and environmental implications.
    Liu J; Wang J; Chen Y; Xie X; Qi J; Lippold H; Luo D; Wang C; Su L; He L; Wu Q
    Environ Pollut; 2016 May; 212():77-89. PubMed ID: 26840520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractionation and extractability of sulfur, iron and trace elements in sulfidic sediments.
    Burton ED; Bush RT; Sullivan LA
    Chemosphere; 2006 Aug; 64(8):1421-8. PubMed ID: 16434078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential use of pyrite cinders as raw material in cement production: results of industrial scale trial operations.
    Alp I; Deveci H; Yazici EY; Türk T; Süngün YH
    J Hazard Mater; 2009 Jul; 166(1):144-9. PubMed ID: 19100685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution and leaching characteristics of trace elements in ashes as a function of different waste fuels and incineration technologies.
    Saqib N; Bäckström M
    J Environ Sci (China); 2015 Oct; 36():9-21. PubMed ID: 26456601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The degree of trace metal pyritization in subtidal sediments of a mariculture area: application to the assessment of toxic risk.
    Alvarez-Iglesias P; Rubio B
    Mar Pollut Bull; 2008 May; 56(5):973-83. PubMed ID: 18308341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Major and trace element partitioning between dissolved and particulate phases in Antarctic surface snow.
    Grotti M; Soggia F; Ardini F; Magi E
    J Environ Monit; 2011 Sep; 13(9):2511-20. PubMed ID: 21750808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid state partitioning of trace metals in suspended particulate matter from a river system affected by smelting-waste drainage.
    Audry S; Blanc G; Schäfer J
    Sci Total Environ; 2006 Jun; 363(1-3):216-36. PubMed ID: 15979692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Historical roasting of thallium- and arsenic-bearing pyrite: Current Tl pollution in the Riotinto mine area.
    López-Arce P; Garrido F; García-Guinea J; Voegelin A; Göttlicher J; Nieto JM
    Sci Total Environ; 2019 Jan; 648():1263-1274. PubMed ID: 30340272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.