BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 19261735)

  • 1. The phloem-delivered RNA pool contains small noncoding RNAs and interferes with translation.
    Zhang S; Sun L; Kragler F
    Plant Physiol; 2009 May; 150(1):378-87. PubMed ID: 19261735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and in vitro studies of Cucurbita maxima phloem serpin-1 RNA-binding properties.
    Tolstyko EA; Lezzhov AA; Pankratenko AV; Serebryakova MV; Solovyev AG; Morozov SY
    Biochimie; 2020 Mar; 170():118-127. PubMed ID: 31935442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mobile Transcripts and Intercellular Communication in Plants.
    Saplaoura E; Kragler F
    Enzymes; 2016; 40():1-29. PubMed ID: 27776778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CmRBP50 protein phosphorylation is essential for assembly of a stable phloem-mobile high-affinity ribonucleoprotein complex.
    Li P; Ham BK; Lucas WJ
    J Biol Chem; 2011 Jul; 286(26):23142-9. PubMed ID: 21572046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex.
    Ham BK; Brandom JL; Xoconostle-Cázares B; Ringgold V; Lough TJ; Lucas WJ
    Plant Cell; 2009 Jan; 21(1):197-215. PubMed ID: 19122103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA phloem transport mediated by pre-miRNA and viral tRNA-like structures.
    Lezzhov AA; Atabekova AK; Tolstyko EA; Lazareva EA; Solovyev AG
    Plant Sci; 2019 Jul; 284():99-107. PubMed ID: 31084885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long distance RNA movement.
    Kehr J; Kragler F
    New Phytol; 2018 Apr; 218(1):29-40. PubMed ID: 29418002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of the pumpkin (Cucurbita maxima) 16 kDa phloem protein CmPP16 increases tolerance to water deficit.
    Ramírez-Ortega FA; Herrera-Pola PS; Toscano-Morales R; Xoconostle-Cázares B; Ruiz-Medrano R
    Plant Signal Behav; 2014; 9(11):e973823. PubMed ID: 25482781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pumpkin eIF5A isoforms interact with components of the translational machinery in the cucurbit sieve tube system.
    Ma Y; Miura E; Ham BK; Cheng HW; Lee YJ; Lucas WJ
    Plant J; 2010 Nov; 64(3):536-50. PubMed ID: 20807213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phloem transport of structured RNAs: A widening repertoire of trafficking signals and protein factors.
    Tolstyko EA; Lezzhov AA; Morozov SY; Solovyev AG
    Plant Sci; 2020 Oct; 299():110602. PubMed ID: 32900440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A systemic small RNA signaling system in plants.
    Yoo BC; Kragler F; Varkonyi-Gasic E; Haywood V; Archer-Evans S; Lee YM; Lough TJ; Lucas WJ
    Plant Cell; 2004 Aug; 16(8):1979-2000. PubMed ID: 15258266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phloem-Mobile RNAs as Systemic Signaling Agents.
    Ham BK; Lucas WJ
    Annu Rev Plant Biol; 2017 Apr; 68():173-195. PubMed ID: 28125282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systemic delivery of siRNA in pumpkin by a plant PHLOEM SMALL RNA-BINDING PROTEIN 1-ribonucleoprotein complex.
    Ham BK; Li G; Jia W; Leary JA; Lucas WJ
    Plant J; 2014 Nov; 80(4):683-94. PubMed ID: 25227635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the pumpkin Translationally-Controlled Tumor Protein CmTCTP.
    Hinojosa-Moya JJ; Xoconostle-Cázares B; Toscano-Morales R; Ramírez-Ortega F; Cabrera-Ponce JL; Ruiz-Medrano R
    Plant Signal Behav; 2013; 8(12):e26477. PubMed ID: 24065051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development.
    Haywood V; Yu TS; Huang NC; Lucas WJ
    Plant J; 2005 Apr; 42(1):49-68. PubMed ID: 15773853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vascular expression in Arabidopsis is predicted by the frequency of CT/GA-rich repeats in gene promoters.
    Ruiz-Medrano R; Xoconostle-Cázares B; Ham BK; Li G; Lucas WJ
    Plant J; 2011 Jul; 67(1):130-44. PubMed ID: 21435051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function.
    Lin MK; Lee YJ; Lough TJ; Phinney BS; Lucas WJ
    Mol Cell Proteomics; 2009 Feb; 8(2):343-56. PubMed ID: 18936055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteome study of the phloem sap of pumpkin using multidimensional protein identification technology.
    Cho WK; Chen XY; Rim Y; Chu H; Kim S; Kim SW; Park ZY; Kim JY
    J Plant Physiol; 2010 Jul; 167(10):771-8. PubMed ID: 20138393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The angiosperm phloem sieve tube system: a role in mediating traits important to modern agriculture.
    Ham BK; Lucas WJ
    J Exp Bot; 2014 Apr; 65(7):1799-816. PubMed ID: 24368503
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macromolecules in phloem exudates--a review.
    Atkins CA; Smith PM; Rodriguez-Medina C
    Protoplasma; 2011 Jan; 248(1):165-72. PubMed ID: 21057827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.