BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 19262691)

  • 21. Evolutionary dynamics of triosephosphate isomerase gene intron location pattern in Metazoa: A new perspective on intron evolution in animals.
    Chen B; Shao J; Zhuang H; Wen J
    Gene; 2017 Feb; 602():24-32. PubMed ID: 27864009
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The evolutionary gain of spliceosomal introns: sequence and phase preferences.
    Qiu WG; Schisler N; Stoltzfus A
    Mol Biol Evol; 2004 Jul; 21(7):1252-63. PubMed ID: 15014153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?
    Koonin EV
    Biol Direct; 2006 Aug; 1():22. PubMed ID: 16907971
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of intron loss events in mammals.
    Coulombe-Huntington J; Majewski J
    Genome Res; 2007 Jan; 17(1):23-32. PubMed ID: 17108319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Eukaryotic Genomes Show Strong Evolutionary Conservation of
    Sievers A; Sauer L; Hausmann M; Hildenbrand G
    Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34680967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Whence genes in pieces: reconstruction of the exon-intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes.
    Koonin EV; Csuros M; Rogozin IB
    Wiley Interdiscip Rev RNA; 2013; 4(1):93-105. PubMed ID: 23139082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of mitochondrial genomes provides insights into intron dynamics and evolution in the caterpillar fungus Cordyceps militaris.
    Zhang Y; Zhang S; Zhang G; Liu X; Wang C; Xu J
    Fungal Genet Biol; 2015 Apr; 77():95-107. PubMed ID: 25896956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparative genomic analysis of fungal genomes reveals intron-rich ancestors.
    Stajich JE; Dietrich FS; Roy SW
    Genome Biol; 2007; 8(10):R223. PubMed ID: 17949488
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hypervariable and highly divergent intron-exon organizations in the chordate Oikopleura dioica.
    Edvardsen RB; Lerat E; Maeland AD; Flåt M; Tewari R; Jensen MF; Lehrach H; Reinhardt R; Seo HC; Chourrout D
    J Mol Evol; 2004 Oct; 59(4):448-57. PubMed ID: 15638456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The emergence and evolution of intron-poor and intronless genes in intron-rich plant gene families.
    Liu H; Lyu HM; Zhu K; Van de Peer Y; Max Cheng ZM
    Plant J; 2021 Feb; 105(4):1072-1082. PubMed ID: 33217085
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phylogenetic distribution of intron positions in alpha-amylase genes of bilateria suggests numerous gains and losses.
    Da Lage JL; Maczkowiak F; Cariou ML
    PLoS One; 2011; 6(5):e19673. PubMed ID: 21611157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic analysis of intron size and abundance parameters in diverse lineages.
    Wu J; Xiao J; Wang L; Zhong J; Yin H; Wu S; Zhang Z; Yu J
    Sci China Life Sci; 2013 Oct; 56(10):968-74. PubMed ID: 24022126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A very high fraction of unique intron positions in the intron-rich diatom Thalassiosira pseudonana indicates widespread intron gain.
    Roy SW; Penny D
    Mol Biol Evol; 2007 Jul; 24(7):1447-57. PubMed ID: 17350938
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular evolution of calmodulin-like domain protein kinases (CDPKs) in plants and protists.
    Zhang XS; Choi JH
    J Mol Evol; 2001 Sep; 53(3):214-24. PubMed ID: 11523008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tetraspanin genes in plants.
    Wang F; Vandepoele K; Van Lijsebettens M
    Plant Sci; 2012 Jul; 190():9-15. PubMed ID: 22608515
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comprehensive genomic analyses with 115 plastomes from algae to seed plants: structure, gene contents, GC contents, and introns.
    Kwon EC; Kim JH; Kim NS
    Genes Genomics; 2020 May; 42(5):553-570. PubMed ID: 32200544
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prevalence of intron gain over intron loss in the evolution of paralogous gene families.
    Babenko VN; Rogozin IB; Mekhedov SL; Koonin EV
    Nucleic Acids Res; 2004; 32(12):3724-33. PubMed ID: 15254274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of new genes explains lower intron density in mammalian Rhodopsin G protein-coupled receptors.
    Fridmanis D; Fredriksson R; Kapa I; Schiöth HB; Klovins J
    Mol Phylogenet Evol; 2007 Jun; 43(3):864-80. PubMed ID: 17188520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Widespread intron loss suggests retrotransposon activity in ancient apicomplexans.
    Roy SW; Penny D
    Mol Biol Evol; 2007 Sep; 24(9):1926-33. PubMed ID: 17522085
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolutionarily conserved genes preferentially accumulate introns.
    Carmel L; Rogozin IB; Wolf YI; Koonin EV
    Genome Res; 2007 Jul; 17(7):1045-50. PubMed ID: 17495009
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.