BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19263043)

  • 1. Partition layer-modified substrates for reversible surface-enhanced Raman scattering detection of polycyclic aromatic hydrocarbons.
    Jones CL; Bantz KC; Haynes CL
    Anal Bioanal Chem; 2009 May; 394(1):303-11. PubMed ID: 19263043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface enhanced Raman spectroscopy hyphenated with surface microextraction for in-situ detection of polycyclic aromatic hydrocarbons on food contact materials.
    Zhang M; Zhang X; Shi YE; Liu Z; Zhan J
    Talanta; 2016 Sep; 158():322-329. PubMed ID: 27343612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C18-modified metal-colloid substrates for surface-enhanced Raman detection of trace-level polycyclic aromatic hydrocarbons in aqueous solution.
    Olson LG; Uibel RH; Harris JM
    Appl Spectrosc; 2004 Dec; 58(12):1394-400. PubMed ID: 15606950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Humic acids-based one-step fabrication of SERS substrates for detection of polycyclic aromatic hydrocarbons.
    Qu LL; Li YT; Li DW; Xue JQ; Fossey JS; Long YT
    Analyst; 2013 Mar; 138(5):1523-8. PubMed ID: 23340517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of polycyclic aromatic hydrocarbon (PAH) compounds in artificial sea-water using surface-enhanced Raman scattering (SERS).
    Péron O; Rinnert E; Lehaitre M; Crassous P; Compère C
    Talanta; 2009 Jul; 79(2):199-204. PubMed ID: 19559865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silver nanoparticle aggregates on metal fibers for solid phase microextraction-surface enhanced Raman spectroscopy detection of polycyclic aromatic hydrocarbons.
    Liu C; Zhang X; Li L; Cui J; Shi YE; Wang L; Zhan J
    Analyst; 2015 Jul; 140(13):4668-75. PubMed ID: 25988666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous and rapid determination of polycyclic aromatic hydrocarbons by facile and green synthesis of silver nanoparticles as effective SERS substrate.
    Li M; Yu H; Cheng Y; Guo Y; Yao W; Xie Y
    Ecotoxicol Environ Saf; 2020 Sep; 200():110780. PubMed ID: 32470683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of surface-enhanced Raman scattering (SERS) for detection of PAHs in the Gulf of Gdańsk (Baltic Sea).
    Pfannkuche J; Lubecki L; Schmidt H; Kowalewska G; Kronfeldt HD
    Mar Pollut Bull; 2012 Mar; 64(3):614-26. PubMed ID: 22248648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensing of polycyclic aromatic hydrocarbons with cyclodextrin inclusion complexes on silver nanoparticles by surface-enhanced Raman scattering.
    Xie Y; Wang X; Han X; Xue X; Ji W; Qi Z; Liu J; Zhao B; Ozaki Y
    Analyst; 2010 Jun; 135(6):1389-94. PubMed ID: 20405060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled silver nanochains for surface-enhanced Raman scattering.
    Yang Y; Shi J; Tanaka T; Nogami M
    Langmuir; 2007 Nov; 23(24):12042-7. PubMed ID: 17963408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of SERS-Active Porous Ag Substrates for the Effective Detection of Pyrene in Water.
    Capaccio A; Sasso A; Rusciano G
    Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of polycyclic aromatic hydrocarbons in water with gold nanoparticles decorated hydrophobic porous polymer as surface-enhanced Raman spectroscopy substrate.
    Wang X; Hao W; Zhang H; Pan Y; Kang Y; Zhang X; Zou M; Tong P; Du Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():214-21. PubMed ID: 25561300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of PAHs in seawater using surface-enhanced Raman scattering (SERS).
    Schmidt H; Bich Ha N; Pfannkuche J; Amann H; Kronfeldt HD; Kowalewska G
    Mar Pollut Bull; 2004 Aug; 49(3):229-34. PubMed ID: 15245987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CTAB micelles assisted rGO-AgNP hybrids for SERS detection of polycyclic aromatic hydrocarbons.
    Jiang M; Qian Z; Zhou X; Xin X; Wu J; Chen C; Zhang G; Xu G; Cheng Y
    Phys Chem Chem Phys; 2015 Sep; 17(33):21158-63. PubMed ID: 25483919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual layer and multilayer enhancements from silver film over nanostructured surface-enhanced Raman substrates.
    Li H; Cullum BM
    Appl Spectrosc; 2005 Apr; 59(4):410-7. PubMed ID: 15901325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ratiometric SERS detection of polycyclic aromatic hydrocarbons assisted by β-cyclodextrin-modified gold nanoparticles.
    Yu Z; Grasso MF; Sorensen HH; Zhang P
    Mikrochim Acta; 2019 May; 186(6):391. PubMed ID: 31152234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface enhanced Raman spectroscopic detection of polycyclic aromatic hydrocarbons (PAHs) using a gold nanoparticles-modified alginate gel network.
    Bao L; Sheng P; Li J; Wu S; Cai Q; Yao S
    Analyst; 2012 Sep; 137(17):4010-5. PubMed ID: 22783547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-area organization of pNIPAM-coated nanostars as SERS platforms for polycyclic aromatic hydrocarbons sensing in gas phase.
    Mueller M; Tebbe M; Andreeva DV; Karg M; Alvarez Puebla RA; Pazos Perez N; Fery A
    Langmuir; 2012 Jun; 28(24):9168-73. PubMed ID: 22381053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertically aligned Ag nanoplate-assembled film as a sensitive and reproducible SERS substrate for the detection of PCB-77.
    Zhu C; Meng G; Huang Q; Huang Z
    J Hazard Mater; 2012 Apr; 211-212():389-95. PubMed ID: 21871725
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma-induced formation of Ag nanodots for ultra-high-enhancement surface-enhanced Raman scattering substrates.
    Li Z; Tong WM; Stickle WF; Neiman DL; Williams RS; Hunter LL; Talin AA; Li D; Brueck SR
    Langmuir; 2007 Apr; 23(9):5135-8. PubMed ID: 17385901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.