These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 19263104)

  • 1. Phantom haptic device upgrade for use in fMRI.
    Hribar A; Koritnik B; Munih M
    Med Biol Eng Comput; 2009 Jun; 47(6):677-84. PubMed ID: 19263104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation of a haptic robot in a 3T fMRI.
    Snider J; Plank M; May L; Liu TT; Poizner H
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 21989084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.
    Menon S; Brantner G; Aholt C; Kay K; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4137-42. PubMed ID: 24110643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haptic fMRI: using classification to quantify task-correlated noise during goal-directed reaching motions.
    Menon S; Quigley P; Yu M; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2046-50. PubMed ID: 25570386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. fMRI assessment of upper extremity related brain activation with an MRI-compatible manipulandum.
    Yu N; Estévez N; Hepp-Reymond MC; Kollias SS; Riener R
    Int J Comput Assist Radiol Surg; 2011 May; 6(3):447-55. PubMed ID: 20697829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A haptic force feedback device for virtual reality-fMRI experiments.
    Di Diodato LM; Mraz R; Baker SN; Graham SJ
    IEEE Trans Neural Syst Rehabil Eng; 2007 Dec; 15(4):570-6. PubMed ID: 18198715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the neural correlates of goal-oriented upper extremity movements.
    Nathan DE; Prost RW; Guastello SJ; Jeutter And DC; Reynolds NC
    NeuroRehabilitation; 2012; 31(4):421-8. PubMed ID: 23232166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel magnetomechanical MR compatible vibrational device for producing kinesthetic illusion during fMRI.
    Carr SJ; Borreggine K; Heilman J; Griswold M; Walter BL
    Med Phys; 2013 Nov; 40(11):112303. PubMed ID: 24320459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haptic fMRI: Reliability and performance of electromagnetic haptic interfaces for motion and force neuroimaging experiments.
    Menon S; Zhu J; Goyal D; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3930-3935. PubMed ID: 29060757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Evaluation of a Cable-Driven fMRI-Compatible Haptic Interface to Investigate Precision Grip Control.
    Vigaru B; Sulzer J; Gassert R
    IEEE Trans Haptics; 2016; 9(1):20-32. PubMed ID: 26441454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A compatible electrocutaneous display for functional magnetic resonance imaging application.
    Hartwig V; Cappelli C; Vanello N; Ricciardi E; Scilingo EP; Giovannetti G; Santarelli MF; Positano V; Pietrini P; Landini L; Bicchi A
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1021-4. PubMed ID: 17946436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a Portable fMRI Compatible Robotic Wrist Interface.
    Farkhatdinov I; Garnier A; Arichi T; Bleuler H; Burdet E
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2535-2539. PubMed ID: 36085990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Haptic fMRI: accurately estimating neural responses in motor, pre-motor, and somatosensory cortex during complex motor tasks.
    Menon S; Yu M; Kay K; Khatib O
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2040-5. PubMed ID: 25570385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive and Wireless Recordings of Electrophysiological Signals During Concurrent Magnetic Resonance Imaging.
    Mandal R; Babaria N; Jiayue Cao ; Zhongming Liu
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1649-1657. PubMed ID: 30369431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges in developing a magnetic resonance-compatible haptic hand-controller for neurosurgical training.
    Maddahi Y; Zareinia K; Tomanek B; Sutherland GR
    Proc Inst Mech Eng H; 2018 Oct; ():954411918806934. PubMed ID: 30355029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Testing of fMRI-Compatibility of an Electrically Active Mechatronic Device for Robot-Assisted Sensorimotor Protocols.
    Farrens AJ; Zonnino A; Erwin A; O'Malley MK; Johnson CL; Ress D; Sergi F
    IEEE Trans Biomed Eng; 2018 Jul; 65(7):1595-1606. PubMed ID: 28829302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual phantom magnetic resonance imaging (ViP MRI) on a clinical MRI platform.
    Saint-Jalmes H; Bordelois A; Gambarota G
    Med Phys; 2018 Jan; 45(1):250-257. PubMed ID: 29121397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and validation of a MR-compatible pneumatic manipulandum.
    Suminski AJ; Zimbelman JL; Scheidt RA
    J Neurosci Methods; 2007 Jul; 163(2):255-66. PubMed ID: 17498811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. fMRI-Compatible Electromagnetic Haptic Interface.
    Riener R; Villgrattner T; Kleiser R; Nef T; Kollias S
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():7024-7. PubMed ID: 17281892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Levitation Haptic Augmentation for Virtual Tissue Stiffness Perception.
    Tong Q; Yuan Z; Liao X; Zheng M; Yuan T; Zhao J
    IEEE Trans Vis Comput Graph; 2018 Dec; 24(12):3123-3136. PubMed ID: 29990159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.