BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 19263418)

  • 1. Properties and mechanisms of spontaneous activity in the embryonic chick hindbrain.
    Hughes SM; Easton CR; Bosma MM
    Dev Neurobiol; 2009 Jul; 69(8):477-90. PubMed ID: 19263418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Switching of the transmitters that mediate hindbrain correlated activity in the chick embryo.
    Mochida H; Sato K; Momose-Sato Y
    Eur J Neurosci; 2009 Jan; 29(1):14-30. PubMed ID: 19087161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Primary role of the serotonergic midline system in synchronized spontaneous activity during development of the embryonic mouse hindbrain.
    Hunt PN; Gust J; McCabe AK; Bosma MM
    J Neurobiol; 2006 Sep; 66(11):1239-52. PubMed ID: 16902991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Midline serotonergic neurones contribute to widespread synchronized activity in embryonic mouse hindbrain.
    Hunt PN; McCabe AK; Bosma MM
    J Physiol; 2005 Aug; 566(Pt 3):807-19. PubMed ID: 15932887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential involvement of projection neurons during emergence of spontaneous activity in the developing avian hindbrain.
    Mochida H; Fortin G; Champagnat J; Glover JC
    J Neurophysiol; 2009 Feb; 101(2):591-602. PubMed ID: 19036869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction between hindbrain and spinal networks during the development of locomotion in zebrafish.
    Chong M; Drapeau P
    Dev Neurobiol; 2007 Jun; 67(7):933-47. PubMed ID: 17506502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Timing and mechanism of a window of spontaneous activity in embryonic mouse hindbrain development.
    Bosma MM
    Ann N Y Acad Sci; 2010 Jun; 1198():182-91. PubMed ID: 20536933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial restriction of spontaneous activity towards the rostral primary initiating zone during development of the embryonic mouse hindbrain.
    Hunt PN; McCabe AK; Gust J; Bosma MM
    J Neurobiol; 2006 Sep; 66(11):1225-38. PubMed ID: 16902989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raphe-spinal neurons display an age-dependent differential capacity for neurite outgrowth compared to other brainstem-spinal populations.
    Borisoff JF; Pataky DM; McBride CB; Steeves JD
    Exp Neurol; 2000 Nov; 166(1):16-28. PubMed ID: 11031080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-/post-otic rhombomeric interactions control the emergence of a fetal-like respiratory rhythm in the mouse embryo.
    Borday C; Coutinho A; Germon I; Champagnat J; Fortin G
    J Neurobiol; 2006 Oct; 66(12):1285-301. PubMed ID: 16967510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serotonergic neurones drive spontaneous activity in the developing mouse hindbrain.
    O'Donovan MJ
    J Physiol; 2005 Aug; 566(Pt 3):643. PubMed ID: 15994178
    [No Abstract]   [Full Text] [Related]  

  • 12. Regionalized cadherin-7 expression by radial glia is regulated by Shh and Pax7 during chicken spinal cord development.
    Luo J; Ju MJ; Redies C
    Neuroscience; 2006 Nov; 142(4):1133-43. PubMed ID: 16973294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogfish Scyliorhinus canicula.
    Carrera I; Molist P; Anadón R; Rodríguez-Moldes I
    J Comp Neurol; 2008 Dec; 511(6):804-31. PubMed ID: 18925650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ontogeny of gamma-aminobutyric acid-immunoreactive neurons in the rhombencephalon and spinal cord of the sea lamprey.
    Meléndez-Ferro M; Pérez-Costas E; Villar-Cheda B; Rodríguez-Muñoz R; Anadón R; Rodicio MC
    J Comp Neurol; 2003 Sep; 464(1):17-35. PubMed ID: 12866126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous activity in the developing mouse midbrain driven by an external pacemaker.
    Rockhill W; Kirkman JL; Bosma MM
    Dev Neurobiol; 2009 Sep; 69(11):689-704. PubMed ID: 19449313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of the earliest correlated neuronal activity in the chick embryo revealed by optical imaging with voltage-sensitive dyes.
    Momose-Sato Y; Mochida H; Kinoshita M
    Eur J Neurosci; 2009 Jan; 29(1):1-13. PubMed ID: 19077122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemoarchitecture of the dorsal column nucleus of the larval sea lamprey.
    Rodicio MC; Villar-Cerviño V; Abalo XM; Villar-Cheda B; Meléndez-Ferro M; Pérez-Costas E; Anadón R
    Brain Res Bull; 2005 Sep; 66(4-6):536-40. PubMed ID: 16144645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engrailed genes control developmental fate of serotonergic and noradrenergic neurons in mid- and hindbrain in a gene dose-dependent manner.
    Simon HH; Scholz C; O'Leary DD
    Mol Cell Neurosci; 2005 Jan; 28(1):96-105. PubMed ID: 15607945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. vHnf1 regulates specification of caudal rhombomere identity in the chick hindbrain.
    Aragón F; Vázquez-Echeverría C; Ulloa E; Reber M; Cereghini S; Alsina B; Giraldez F; Pujades C
    Dev Dyn; 2005 Nov; 234(3):567-76. PubMed ID: 16110512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuronal differentiation of the early embryonic auditory hindbrain of the chicken in primary culture.
    Kuenzel T; Mönig B; Wagner H; Mey J; Luksch H
    Eur J Neurosci; 2007 Feb; 25(4):974-84. PubMed ID: 17331194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.