These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19263895)

  • 1. Endogenous and exogenous factors controlling temporal abundance patterns of tropical mosquitoes.
    Yang GJ; Brook BW; Whelan PI; Cleland S; Bradshaw CJ
    Ecol Appl; 2008 Dec; 18(8):2028-40. PubMed ID: 19263895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying the drivers of larval density patterns in two tropical mosquito species to maximize control efficiency.
    De Little SC; Bowman DM; Whelan PI; Brook BW; Bradshaw CJ
    Environ Entomol; 2009 Aug; 38(4):1013-21. PubMed ID: 19689879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining meteorological drivers of salt marsh mosquito peaks in tropical northern Australia.
    Jacups SP; Carter J; Kurucz N; McDonnell J; Whelan PI
    J Vector Ecol; 2015 Dec; 40(2):277-81. PubMed ID: 26611962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling the ecology of the coastal mosquitoes Aedes vigilax and Aedes camptorhynchus at Port Pirie, South Australia.
    Kokkinn MJ; Duval DJ; Williams CR
    Med Vet Entomol; 2009 Mar; 23(1):85-91. PubMed ID: 19239618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the timing and magnitude of tropical mosquito population peaks for maximizing control efficiency.
    Yang GJ; Brook BW; Bradshaw CJ
    PLoS Negl Trop Dis; 2009; 3(2):e385. PubMed ID: 19238191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive indicators for Ross River virus infection in the Darwin area of tropical northern Australia, using long-term mosquito trapping data.
    Jacups SP; Whelan PI; Markey PG; Cleland SJ; Williamson GJ; Currie BJ
    Trop Med Int Health; 2008 Jul; 13(7):943-52. PubMed ID: 18482196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards management of mosquitoes at Homebush Bay, Sydney, Australia. I. Seasonal activity and relative abundance of adults of Aedes vigilax, Culex sitiens, and other salt-marsh species, 1993-94 through 1997-98.
    Webb CE; Russell RC
    J Am Mosq Control Assoc; 1999 Jun; 15(2):242-9. PubMed ID: 10412120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping and predicting malaria transmission in the People's Republic of China, using integrated biology-driven and statistical models.
    Yang GJ; Gao Q; Zhou SS; Malone JB; McCarroll JC; Tanner M; Vounatsou P; Bergquist R; Utzinger J; Zhou XN
    Geospat Health; 2010 Nov; 5(1):11-22. PubMed ID: 21080317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a regional climate change model for
    Staples K; Neville PJ; Richardson S; Oosthuizen J
    Bull Entomol Res; 2024 Feb; 114(1):8-21. PubMed ID: 38235528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of Aedes vigilax larval population densities and associated vegetation categories in a coastal wetland, Northern Territory, Australia.
    Jacups SP; Kurucz N; Whelan PI; Carter JM
    J Vector Ecol; 2009 Dec; 34(2):311-6. PubMed ID: 20836834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seasonal Abundance of Aedes Sollicitans and Aedes Taeniorhynchus Related to Temperature, Rainfall and Tidal Levels in Northeastern Florida.
    Dale P; Qualls WA; Xue RD
    J Am Mosq Control Assoc; 2023 Sep; 39(3):168-172. PubMed ID: 37796734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the effect of rainfall changes to predict population dynamics of the Asian tiger mosquito Aedes albopictus under future climate conditions.
    Fukui S; Kuwano Y; Ueno K; Atsumi K; Ohta S
    PLoS One; 2022; 17(5):e0268211. PubMed ID: 35613220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A geospatial evaluation of Aedes vigilax larval control efforts across a coastal wetland, Northern Territory, Australia.
    Kurucz N; Whelan PI; Carter JM; Jacups SP
    J Vector Ecol; 2009 Dec; 34(2):317-23. PubMed ID: 20836835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aedes aegypti (Diptera: Culicidae) Abundance Model Improved With Relative Humidity and Precipitation-Driven Egg Hatching.
    Lega J; Brown HE; Barrera R
    J Med Entomol; 2017 Sep; 54(5):1375-1384. PubMed ID: 28402546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Climatic effects on mosquito abundance in Mediterranean wetlands.
    Roiz D; Ruiz S; Soriguer R; Figuerola J
    Parasit Vectors; 2014 Jul; 7():333. PubMed ID: 25030527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autochthonous Chikungunya Transmission and Extreme Climate Events in Southern France.
    Roiz D; Boussès P; Simard F; Paupy C; Fontenille D
    PLoS Negl Trop Dis; 2015 Jun; 9(6):e0003854. PubMed ID: 26079620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foraging ranges of insectivorous bats shift relative to changes in mosquito abundance.
    Gonsalves L; Law B; Webb C; Monamy V
    PLoS One; 2013; 8(5):e64081. PubMed ID: 23667699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mosquito populations dynamics associated with climate variations.
    Wilke ABB; Medeiros-Sousa AR; Ceretti-Junior W; Marrelli MT
    Acta Trop; 2017 Feb; 166():343-350. PubMed ID: 27810426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of meteorological factors on the seasonal prevalence of dengue vectors in upland hilly and lowland Terai regions of Nepal.
    Tuladhar R; Singh A; Banjara MR; Gautam I; Dhimal M; Varma A; Choudhary DK
    Parasit Vectors; 2019 Jan; 12(1):42. PubMed ID: 30658693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How do local differences in saltmarsh ecology influence disease vector mosquito populations?
    Rowbottom R; Carver S; Barmuta LA; Weinstein P; Allen GR
    Med Vet Entomol; 2020 Sep; 34(3):279-290. PubMed ID: 32080876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.