BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

443 related articles for article (PubMed ID: 19264523)

  • 41. Sampling of the native conformational ensemble of myoglobin via structures in different crystalline environments.
    Kondrashov DA; Zhang W; Aranda R; Stec B; Phillips GN
    Proteins; 2008 Feb; 70(2):353-62. PubMed ID: 17680690
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Density-based clustering of small peptide conformations sampled from a molecular dynamics simulation.
    Kim M; Choi SH; Kim J; Choi K; Shin JM; Kang SK; Choi YJ; Jung DH
    J Chem Inf Model; 2009 Nov; 49(11):2528-36. PubMed ID: 19863092
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of heme on the conformational stability of micro-myoglobin.
    Ji HF; Shen L; Grandori R; Müller N
    FEBS J; 2008 Jan; 275(1):89-96. PubMed ID: 18039332
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Exploring multiple timescale motions in protein GB3 using accelerated molecular dynamics and NMR spectroscopy.
    Markwick PR; Bouvignies G; Blackledge M
    J Am Chem Soc; 2007 Apr; 129(15):4724-30. PubMed ID: 17375925
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Can principal components yield a dimension reduced description of protein dynamics on long time scales?
    Lange OF; Grubmüller H
    J Phys Chem B; 2006 Nov; 110(45):22842-52. PubMed ID: 17092036
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Free-energy barriers in MbCO rebinding.
    Banushkina P; Meuwly M
    J Phys Chem B; 2005 Sep; 109(35):16911-7. PubMed ID: 16853152
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of time series analysis on molecular dynamics simulations of proteins: a study of different conformational spaces by principal component analysis.
    Alakent B; Doruker P; Camurdan MC
    J Chem Phys; 2004 Sep; 121(10):4759-69. PubMed ID: 15332910
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Atomic-level description of amyloid beta-dimer formation.
    Gnanakaran S; Nussinov R; García AE
    J Am Chem Soc; 2006 Feb; 128(7):2158-9. PubMed ID: 16478138
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Solvent effects on conformational dynamics of Zn-substituted myoglobin observed by time-resolved hole-burning spectroscopy.
    Shibata Y; Kurita A; Kushida T
    Biochemistry; 1999 Feb; 38(6):1789-801. PubMed ID: 10026259
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular simulation of multistate peptide dynamics: a comparison between microsecond timescale sampling and multiple shorter trajectories.
    Monticelli L; Sorin EJ; Tieleman DP; Pande VS; Colombo G
    J Comput Chem; 2008 Aug; 29(11):1740-52. PubMed ID: 18307167
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polypeptide folding on a conformational-space network: dependence of network topology on the structural discretization procedure.
    Affentranger R; Daura X
    J Comput Chem; 2010 Jul; 31(9):1889-903. PubMed ID: 20082384
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Simulated annealing coupled replica exchange molecular dynamics--an efficient conformational sampling method.
    Kannan S; Zacharias M
    J Struct Biol; 2009 Jun; 166(3):288-94. PubMed ID: 19272454
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Collective Langevin dynamics of conformational motions in proteins.
    Lange OF; Grubmüller H
    J Chem Phys; 2006 Jun; 124(21):214903. PubMed ID: 16774438
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantifying polypeptide conformational space: sensitivity to conformation and ensemble definition.
    Sullivan DC; Lim C
    J Phys Chem B; 2006 Aug; 110(33):16707-17. PubMed ID: 16913810
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit.
    Skjaerven L; Martinez A; Reuter N
    Proteins; 2011 Jan; 79(1):232-43. PubMed ID: 21058295
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diffusive dynamics on multidimensional rough free energy surfaces.
    Banushkina P; Meuwly M
    J Chem Phys; 2007 Oct; 127(13):135101. PubMed ID: 17919054
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Minimum free energy pathways and free energy profiles for conformational transitions based on atomistic molecular dynamics simulations.
    van der Vaart A; Karplus M
    J Chem Phys; 2007 Apr; 126(16):164106. PubMed ID: 17477588
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermodynamics and folding pathways of trpzip2: an accelerated molecular dynamics simulation study.
    Yang L; Shao Q; Gao YQ
    J Phys Chem B; 2009 Jan; 113(3):803-8. PubMed ID: 19113829
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Structural and pathway complexity of beta-strand reorganization within aggregates of human transthyretin(105-115) peptide.
    Li DW; Han L; Huo S
    J Phys Chem B; 2007 May; 111(19):5425-33. PubMed ID: 17432900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.