BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 19265037)

  • 1. Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish.
    Stoletov K; Fang L; Choi SH; Hartvigsen K; Hansen LF; Hall C; Pattison J; Juliano J; Miller ER; Almazan F; Crosier P; Witztum JL; Klemke RL; Miller YI
    Circ Res; 2009 Apr; 104(8):952-60. PubMed ID: 19265037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronological in vivo imaging reveals endothelial inflammation prior to neutrophils accumulation and lipid deposition in HCD-fed zebrafish.
    Luo H; Li QQ; Wu N; Shen YG; Liao WT; Yang Y; Dong E; Zhang GM; Liu BR; Yue XZ; Tang XQ; Yang HS
    Atherosclerosis; 2019 Nov; 290():125-135. PubMed ID: 31614249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish.
    Fang L; Green SR; Baek JS; Lee SH; Ellett F; Deer E; Lieschke GJ; Witztum JL; Tsimikas S; Miller YI
    J Clin Invest; 2011 Dec; 121(12):4861-9. PubMed ID: 22105168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The important role of apolipoprotein A-II in ezetimibe driven reduction of high cholesterol diet-induced atherosclerosis.
    Yan Y; He F; Li Z; Xu R; Li T; Su J; Liu X; Zhao M; Wu W
    Atherosclerosis; 2019 Jan; 280():99-108. PubMed ID: 30500605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidized cholesteryl esters and phospholipids in zebrafish larvae fed a high cholesterol diet: macrophage binding and activation.
    Fang L; Harkewicz R; Hartvigsen K; Wiesner P; Choi SH; Almazan F; Pattison J; Deer E; Sayaphupha T; Dennis EA; Witztum JL; Tsimikas S; Miller YI
    J Biol Chem; 2010 Oct; 285(42):32343-51. PubMed ID: 20710028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling hypercholesterolemia and vascular lipid accumulation in LDL receptor mutant zebrafish.
    Liu C; Kim YS; Kim J; Pattison J; Kamaid A; Miller YI
    J Lipid Res; 2018 Feb; 59(2):391-399. PubMed ID: 29187523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High cholesterol diet induces IL-1β expression in adult but not larval zebrafish.
    Yoon Y; Yoon J; Jang MY; Na Y; Ko Y; Choi JH; Seok SH
    PLoS One; 2013; 8(6):e66970. PubMed ID: 23825600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ezetimibe and simvastatin reduce cholesterol levels in zebrafish larvae fed a high-cholesterol diet.
    Baek JS; Fang L; Li AC; Miller YI
    Cholesterol; 2012; 2012():564705. PubMed ID: 22693663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging applications for zebrafish as a model organism to study oxidative mechanisms and their roles in inflammation and vascular accumulation of oxidized lipids.
    Fang L; Miller YI
    Free Radic Biol Med; 2012 Oct; 53(7):1411-20. PubMed ID: 22906686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptomic analysis of the liver of cholesterol-fed rabbits reveals altered hepatic lipid metabolism and inflammatory response.
    Wang W; Chen Y; Bai L; Zhao S; Wang R; Liu B; Zhang Y; Fan J; Liu E
    Sci Rep; 2018 Apr; 8(1):6437. PubMed ID: 29692426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Grape skin and loquat leaf extracts and acai puree have potent anti-atherosclerotic and anti-diabetic activity in vitro and in vivo in hypercholesterolemic zebrafish.
    Kim JY; Hong JH; Jung HK; Jeong YS; Cho KH
    Int J Mol Med; 2012 Sep; 30(3):606-14. PubMed ID: 22751734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turmeric and laurel aqueous extracts exhibit in vitro anti-atherosclerotic activity and in vivo hypolipidemic effects in a zebrafish model.
    Jin S; Hong JH; Jung SH; Cho KH
    J Med Food; 2011 Mar; 14(3):247-56. PubMed ID: 21332404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Midkine is expressed by infiltrating macrophages in in-stent restenosis in hypercholesterolemic rabbits.
    Narita H; Chen S; Komori K; Kadomatsu K
    J Vasc Surg; 2008 Jun; 47(6):1322-9. PubMed ID: 18353604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ezetimibe reduces plaque inflammation in a rabbit model of atherosclerosis and inhibits monocyte migration in addition to its lipid-lowering effect.
    Gómez-Garre D; Muñoz-Pacheco P; González-Rubio ML; Aragoncillo P; Granados R; Fernández-Cruz A
    Br J Pharmacol; 2009 Apr; 156(8):1218-27. PubMed ID: 19222481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cinnamaldehyde exerts vasculoprotective effects in hypercholestrolemic rabbits.
    Nour OAA; Shehatou GSG; Rahim MA; El-Awady MS; Suddek GM
    Naunyn Schmiedebergs Arch Pharmacol; 2018 Nov; 391(11):1203-1219. PubMed ID: 30058017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative renal injury and lipoprotein oxidation in hypercholesterolemic atherogenesis: Role of eicosapentaenoate-lipoate (EPA-LA) derivative.
    Kumar SA; Sudhahar V; Varalakshmi P
    Prostaglandins Leukot Essent Fatty Acids; 2006 Jul; 75(1):25-31. PubMed ID: 16737804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toll-like receptor-4 and lipoprotein accumulation in macrophages.
    Miller YI; Choi SH; Fang L; Harkewicz R
    Trends Cardiovasc Med; 2009 Oct; 19(7):227-32. PubMed ID: 20382346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transgenic zebrafish line for in vivo visualisation of neutrophil myeloperoxidase.
    Buchan KD; Prajsnar TK; Ogryzko NV; de Jong NWM; van Gent M; Kolata J; Foster SJ; van Strijp JAG; Renshaw SA
    PLoS One; 2019; 14(4):e0215592. PubMed ID: 31002727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cholesteryl hemiesters alter lysosome structure and function and induce proinflammatory cytokine production in macrophages.
    Domingues N; Estronca LMBB; Silva J; Encarnação MR; Mateus R; Silva D; Santarino IB; Saraiva M; Soares MIL; Pinho E Melo TMVD; Jacinto A; Vaz WLC; Vieira OV
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Feb; 1862(2):210-220. PubMed ID: 27793708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zebrafish (
    Bolten JS; Pratsinis A; Alter CL; Fricker G; Huwyler J
    Am J Physiol Renal Physiol; 2022 Mar; 322(3):F280-F294. PubMed ID: 35037468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.