BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 19265149)

  • 1. Synergy between individual TNF-dependent functions determines granuloma performance for controlling Mycobacterium tuberculosis infection.
    Ray JC; Flynn JL; Kirschner DE
    J Immunol; 2009 Mar; 182(6):3706-17. PubMed ID: 19265149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiscale computational modeling reveals a critical role for TNF-α receptor 1 dynamics in tuberculosis granuloma formation.
    Fallahi-Sichani M; El-Kebir M; Marino S; Kirschner DE; Linderman JJ
    J Immunol; 2011 Mar; 186(6):3472-83. PubMed ID: 21321109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection.
    Roach DR; Bean AG; Demangel C; France MP; Briscoe H; Britton WJ
    J Immunol; 2002 May; 168(9):4620-7. PubMed ID: 11971010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen Modulates the Effectiveness of Granuloma Mediated Host Response to Mycobacterium tuberculosis: A Multiscale Computational Biology Approach.
    Sershen CL; Plimpton SJ; May EE
    Front Cell Infect Microbiol; 2016; 6():6. PubMed ID: 26913242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reaction-diffusion model to understand granulomas formation inside secondary lobule during tuberculosis infection.
    Català M; Prats C; López D; Cardona PJ; Alonso S
    PLoS One; 2020; 15(9):e0239289. PubMed ID: 32936814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor necrosis factor and chemokine interactions in the formation and maintenance of granulomas in tuberculosis.
    Algood HM; Lin PL; Flynn JL
    Clin Infect Dis; 2005 Aug; 41 Suppl 3():S189-93. PubMed ID: 15983898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low Levels of T Cell Exhaustion in Tuberculous Lung Granulomas.
    Wong EA; Joslyn L; Grant NL; Klein E; Lin PL; Kirschner DE; Flynn JL
    Infect Immun; 2018 Sep; 86(9):. PubMed ID: 29891540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor necrosis factor neutralization results in disseminated disease in acute and latent Mycobacterium tuberculosis infection with normal granuloma structure in a cynomolgus macaque model.
    Lin PL; Myers A; Smith L; Bigbee C; Bigbee M; Fuhrman C; Grieser H; Chiosea I; Voitenek NN; Capuano SV; Klein E; Flynn JL
    Arthritis Rheum; 2010 Feb; 62(2):340-50. PubMed ID: 20112395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Life and death in the granuloma: immunopathology of tuberculosis.
    Saunders BM; Britton WJ
    Immunol Cell Biol; 2007; 85(2):103-11. PubMed ID: 17213830
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivation of latent tuberculosis infection in TNF-deficient mice.
    Botha T; Ryffel B
    J Immunol; 2003 Sep; 171(6):3110-8. PubMed ID: 12960337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmembrane TNF is sufficient to initiate cell migration and granuloma formation and provide acute, but not long-term, control of Mycobacterium tuberculosis infection.
    Saunders BM; Tran S; Ruuls S; Sedgwick JD; Briscoe H; Britton WJ
    J Immunol; 2005 Apr; 174(8):4852-9. PubMed ID: 15814712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-scale modeling predicts a balance of tumor necrosis factor-α and interleukin-10 controls the granuloma environment during Mycobacterium tuberculosis infection.
    Cilfone NA; Perry CR; Kirschner DE; Linderman JJ
    PLoS One; 2013; 8(7):e68680. PubMed ID: 23869227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of key processes that control tumor necrosis factor availability in a tuberculosis granuloma.
    Fallahi-Sichani M; Schaller MA; Kirschner DE; Kunkel SL; Linderman JJ
    PLoS Comput Biol; 2010 May; 6(5):e1000778. PubMed ID: 20463877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In a murine tuberculosis model, the absence of homeostatic chemokines delays granuloma formation and protective immunity.
    Khader SA; Rangel-Moreno J; Fountain JJ; Martino CA; Reiley WW; Pearl JE; Winslow GM; Woodland DL; Randall TD; Cooper AM
    J Immunol; 2009 Dec; 183(12):8004-14. PubMed ID: 19933855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perspectives on host adaptation in response to Mycobacterium tuberculosis: modulation of inflammation.
    Dorhoi A; Kaufmann SH
    Semin Immunol; 2014 Dec; 26(6):533-42. PubMed ID: 25453228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The formation of the granuloma in tuberculosis infection.
    Orme IM; Basaraba RJ
    Semin Immunol; 2014 Dec; 26(6):601-9. PubMed ID: 25453231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A TNF-regulated recombinatorial macrophage immune receptor implicated in granuloma formation in tuberculosis.
    Beham AW; Puellmann K; Laird R; Fuchs T; Streich R; Breysach C; Raddatz D; Oniga S; Peccerella T; Findeisen P; Kzhyshkowska J; Gratchev A; Schweyer S; Saunders B; Wessels JT; Möbius W; Keane J; Becker H; Ganser A; Neumaier M; Kaminski WE
    PLoS Pathog; 2011 Nov; 7(11):e1002375. PubMed ID: 22114556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissecting host factors that regulate the early stages of tuberculosis infection.
    Agrawal N; Bhattacharyya C; Mukherjee A; Ullah U; Pandit B; Rao KVS; Majumder PP
    Tuberculosis (Edinb); 2016 Sep; 100():102-113. PubMed ID: 27553417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A hybrid multi-compartment model of granuloma formation and T cell priming in tuberculosis.
    Marino S; El-Kebir M; Kirschner D
    J Theor Biol; 2011 Jul; 280(1):50-62. PubMed ID: 21443879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of tumor necrosis factor-alpha in Mycobacterium-induced granuloma formation in tumor necrosis factor-alpha-deficient mice.
    Kaneko H; Yamada H; Mizuno S; Udagawa T; Kazumi Y; Sekikawa K; Sugawara I
    Lab Invest; 1999 Apr; 79(4):379-86. PubMed ID: 10211990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.