BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 19265450)

  • 1. Use of biodiesel-derived crude glycerol for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare.
    Athalye SK; Garcia RA; Wen Z
    J Agric Food Chem; 2009 Apr; 57(7):2739-44. PubMed ID: 19265450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: effects of impurities on DHA production and algal biomass composition.
    Pyle DJ; Garcia RA; Wen Z
    J Agric Food Chem; 2008 Jun; 56(11):3933-9. PubMed ID: 18465872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of dry-milling derived thin stillage for producing eicosapentaenoic acid (EPA) by the fungus Pythium irregulare.
    Liang Y; Zhao X; Strait M; Wen Z
    Bioresour Technol; 2012 May; 111():404-9. PubMed ID: 22386467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonfeed application of rendered animal proteins for microbial production of eicosapentaenoic acid by the fungus Pythium irregulare.
    Liang Y; Garcia RA; Piazza GJ; Wen Z
    J Agric Food Chem; 2011 Nov; 59(22):11990-6. PubMed ID: 22010831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pythium irregulare fermentation to produce arachidonic acid (ARA) and eicosapentaenoic acid (EPA) using soybean processing co-products as substrates.
    Lio J; Wang T
    Appl Biochem Biotechnol; 2013 Jan; 169(2):595-611. PubMed ID: 23269636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid.
    Ethier S; Woisard K; Vaughan D; Wen Z
    Bioresour Technol; 2011 Jan; 102(1):88-93. PubMed ID: 20570140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The safety assessment of Pythium irregulare as a producer of biomass and eicosapentaenoic acid for use in dietary supplements and food ingredients.
    Wu L; Roe CL; Wen Z
    Appl Microbiol Biotechnol; 2013 Sep; 97(17):7579-85. PubMed ID: 23900800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodiesel-derived crude glycerol bioconversion to animal feed: a sustainable option for a biodiesel refinery.
    Nitayavardhana S; Khanal SK
    Bioresour Technol; 2011 May; 102(10):5808-14. PubMed ID: 21382713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of cultural conditions on production of eicosapentaenoic acid by Pythium irregulare.
    Stinson EE; Kwoczak R; Kurantz MJ
    J Ind Microbiol; 1991 Oct; 8(3):171-8. PubMed ID: 1367900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Converting crude glycerol derived from yellow grease to lipids through yeast fermentation.
    Liang Y; Cui Y; Trushenski J; Blackburn JW
    Bioresour Technol; 2010 Oct; 101(19):7581-6. PubMed ID: 20478702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation.
    Liang Y; Sarkany N; Cui Y; Blackburn JW
    Bioresour Technol; 2010 Sep; 101(17):6745-50. PubMed ID: 20381345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of impurities in biodiesel-derived crude glycerol on the fermentation by Clostridium pasteurianum ATCC 6013.
    Venkataramanan KP; Boatman JJ; Kurniawan Y; Taconi KA; Bothun GD; Scholz C
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1325-35. PubMed ID: 22202963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide sequencing and metabolic annotation of Pythium irregulare CBS 494.86: understanding Eicosapentaenoic acid production.
    Fernandes BS; Dias O; Costa G; Kaupert Neto AA; Resende TFC; Oliveira JVC; Riaño-Pachón DM; Zaiat M; Pradella JGC; Rocha I
    BMC Biotechnol; 2019 Jun; 19(1):41. PubMed ID: 31253157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Industrial glycerol as a supplementary carbon source in the production of beta-carotene by Blakeslea trispora.
    Mantzouridou F; Naziri E; Tsimidou MZ
    J Agric Food Chem; 2008 Apr; 56(8):2668-75. PubMed ID: 18370396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Value-added oil and animal feed production from corn-ethanol stillage using the oleaginous fungus Mucor circinelloides.
    Mitra D; Rasmussen ML; Chand P; Chintareddy VR; Yao L; Grewell D; Verkade JG; Wang T; van Leeuwen JH
    Bioresour Technol; 2012 Mar; 107():368-75. PubMed ID: 22237170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid.
    Scott SD; Armenta RE; Berryman KT; Norman AW
    Enzyme Microb Technol; 2011 Mar; 48(3):267-72. PubMed ID: 22112910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol.
    Chen YH; Walker TH
    Biotechnol Lett; 2011 Oct; 33(10):1973-83. PubMed ID: 21691839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of the polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid by the fungus Pythium ultimum.
    Gandhi SR; Weete JD
    J Gen Microbiol; 1991 Aug; 137(8):1825-30. PubMed ID: 1955868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations.
    Mu Y; Teng H; Zhang DJ; Wang W; Xiu ZL
    Biotechnol Lett; 2006 Nov; 28(21):1755-9. PubMed ID: 16900328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial oil produced from biodiesel by-products could enhance overall production.
    Uçkun Kiran E; Trzcinski A; Webb C
    Bioresour Technol; 2013 Feb; 129():650-4. PubMed ID: 23298770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.