BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 19265539)

  • 1. The outcome of Cryptococcus neoformans intracellular pathogenesis in human monocytes.
    Alvarez M; Burn T; Luo Y; Pirofski LA; Casadevall A
    BMC Microbiol; 2009 Mar; 9():51. PubMed ID: 19265539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages.
    Alvarez M; Casadevall A
    Curr Biol; 2006 Nov; 16(21):2161-5. PubMed ID: 17084702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing Phagocytosis of Cryptococcus neoformans Cells in Human Monocytes or the J774 Murine Macrophage Cell Line.
    Lafont E; Sturny-Leclère A; Coelho C; Lanternier F; Alanio A
    Methods Mol Biol; 2024; 2775():157-169. PubMed ID: 38758317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection.
    Feldmesser M; Kress Y; Novikoff P; Casadevall A
    Infect Immun; 2000 Jul; 68(7):4225-37. PubMed ID: 10858240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catch me if you can: phagocytosis and killing avoidance by Cryptococcus neoformans.
    García-Rodas R; Zaragoza O
    FEMS Immunol Med Microbiol; 2012 Mar; 64(2):147-61. PubMed ID: 22029633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sensitive high-throughput assay for evaluating host-pathogen interactions in Cryptococcus neoformans infection.
    Srikanta D; Yang M; Williams M; Doering TL
    PLoS One; 2011; 6(7):e22773. PubMed ID: 21829509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibody action after phagocytosis promotes Cryptococcus neoformans and Cryptococcus gattii macrophage exocytosis with biofilm-like microcolony formation.
    Alvarez M; Saylor C; Casadevall A
    Cell Microbiol; 2008 Aug; 10(8):1622-33. PubMed ID: 18384661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryptococcus neoformans and Cryptococcus gattii clinical isolates from Thailand display diverse phenotypic interactions with macrophages.
    Hansakon A; Mutthakalin P; Ngamskulrungroj P; Chayakulkeeree M; Angkasekwinai P
    Virulence; 2019 Dec; 10(1):26-36. PubMed ID: 30520685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction Between Macrophages and Cryptococcus neoformans: Distinguishing Phagocytosed Versus External Fungi.
    Rocha AP; Alves TS; Caixeta AV; Albuquerque P; Nicola AM
    Methods Mol Biol; 2024; 2775():171-193. PubMed ID: 38758318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages.
    Alvarez M; Casadevall A
    BMC Immunol; 2007 Aug; 8():16. PubMed ID: 17705844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of cell cycle and replication of mouse macrophages after in vivo and in vitro Cryptococcus neoformans infection using laser scanning cytometry.
    Coelho C; Tesfa L; Zhang J; Rivera J; Gonçalves T; Casadevall A
    Infect Immun; 2012 Apr; 80(4):1467-78. PubMed ID: 22252872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryptococcus Neoformans Infection and Immune Cell Regulation in Human Monocytes.
    Chen S; Yan H; Zhang L; Kong W; Sun Y; Zhang W; Chen Y; Deng A
    Cell Physiol Biochem; 2015; 37(2):537-47. PubMed ID: 26328591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal-induced cell cycle impairment, chromosome instability and apoptosis via differential activation of NF-κB.
    Ben-Abdallah M; Sturny-Leclère A; Avé P; Louise A; Moyrand F; Weih F; Janbon G; Mémet S
    PLoS Pathog; 2012; 8(3):e1002555. PubMed ID: 22396644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CR3-dependent phagocytosis by murine macrophages: different cytokines regulate ingestion of a defined CR3 ligand and complement-opsonized Cryptococcus neoformans.
    Cross CE; Collins HL; Bancroft GJ
    Immunology; 1997 Jun; 91(2):289-96. PubMed ID: 9227330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryptococcus neoformans host adaptation: toward biological evidence of dormancy.
    Alanio A; Vernel-Pauillac F; Sturny-Leclère A; Dromer F
    mBio; 2015 Mar; 6(2):. PubMed ID: 25827423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transcriptional response of Cryptococcus neoformans to ingestion by Acanthamoeba castellanii and macrophages provides insights into the evolutionary adaptation to the mammalian host.
    Derengowski Lda S; Paes HC; Albuquerque P; Tavares AH; Fernandes L; Silva-Pereira I; Casadevall A
    Eukaryot Cell; 2013 May; 12(5):761-74. PubMed ID: 23524994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlytic exocytosis of Cryptococcus neoformans from macrophages occurs in vivo and is influenced by phagosomal pH.
    Nicola AM; Robertson EJ; Albuquerque P; Derengowski Lda S; Casadevall A
    mBio; 2011; 2(4):. PubMed ID: 21828219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inflammatory monocytes are detrimental to the host immune response during acute infection with Cryptococcus neoformans.
    Heung LJ; Hohl TM
    PLoS Pathog; 2019 Mar; 15(3):e1007627. PubMed ID: 30897162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phagocytosis of Cryptococcus neoformans by, and nonlytic exocytosis from, Acanthamoeba castellanii.
    Chrisman CJ; Alvarez M; Casadevall A
    Appl Environ Microbiol; 2010 Sep; 76(18):6056-62. PubMed ID: 20675457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capsular specific IgM enhances complement-mediated phagocytosis and killing of Cryptococcus neoformans by methamphetamine-treated J774.16 macrophage-like cells.
    Aslanyan L; Ekhar VV; DeLeon-Rodriguez CM; Martinez LR
    Int Immunopharmacol; 2017 Aug; 49():77-84. PubMed ID: 28551495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.