These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 19265703)

  • 1. Structure and function of the macrolide biosensor protein, MphR(A), with and without erythromycin.
    Zheng J; Sagar V; Smolinsky A; Bourke C; LaRonde-LeBlanc N; Cropp TA
    J Mol Biol; 2009 Apr; 387(5):1250-60. PubMed ID: 19265703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into resistance mechanism of the macrolide biosensor protein MphR(A) binding to macrolide antibiotic erythromycin by molecular dynamics simulation.
    Feng T; Zhang Y; Ding JN; Fan S; Han JG
    J Comput Aided Mol Des; 2015 Dec; 29(12):1123-36. PubMed ID: 26564143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrolide inactivation gene cluster mphA-mrx-mphR adjacent to a class 1 integron in Aeromonas hydrophila isolated from a diarrhoeic pig in Oklahoma.
    Poole TL; Callaway TR; Bischoff KM; Warnes CE; Nisbet DJ
    J Antimicrob Chemother; 2006 Jan; 57(1):31-8. PubMed ID: 16339607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study between macrolide regulatory proteins MphR(A) and MphR(E) in ligand identification and DNA binding based on the rapid in vitro detection system.
    Cheng Y; Yang S; Jia M; Zhao L; Hou C; You X; Zhao J; Chen A
    Anal Bioanal Chem; 2016 Feb; 408(6):1623-31. PubMed ID: 26753969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of transcription of the mph(A) gene for macrolide 2'-phosphotransferase I in Escherichia coli: characterization of the regulatory gene mphR(A).
    Noguchi N; Takada K; Katayama J; Emura A; Sasatsu M
    J Bacteriol; 2000 Sep; 182(18):5052-8. PubMed ID: 10960087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photochemical control of bacterial signal processing using a light-activated erythromycin.
    Gardner L; Zou Y; Mara A; Cropp TA; Deiters A
    Mol Biosyst; 2011 Sep; 7(9):2554-7. PubMed ID: 21785768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility.
    Partridge JD; Bodenmiller DM; Humphrys MS; Spiro S
    Mol Microbiol; 2009 Aug; 73(4):680-94. PubMed ID: 19656291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural origins for selectivity and specificity in an engineered bacterial repressor-inducer pair.
    Klieber MA; Scholz O; Lochner S; Gmeiner P; Hillen W; Muller YA
    FEBS J; 2009 Oct; 276(19):5610-21. PubMed ID: 19712110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing scaleup yield for protein production: Computationally Optimized DNA Assembly (CODA) and Translation Engineering.
    Hatfield GW; Roth DA
    Biotechnol Annu Rev; 2007; 13():27-42. PubMed ID: 17875472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different regions of Mlc and NagC, homologous transcriptional repressors controlling expression of the glucose and N-acetylglucosamine phosphotransferase systems in Escherichia coli, are required for inducer signal recognition.
    Pennetier C; Domínguez-Ramírez L; Plumbridge J
    Mol Microbiol; 2008 Jan; 67(2):364-77. PubMed ID: 18067539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering DNA recognition and allosteric response properties of TetR family proteins by using a module-swapping strategy.
    Dimas RP; Jordan BR; Jiang XL; Martini C; Glavy JS; Patterson DP; Morcos F; Chan CTY
    Nucleic Acids Res; 2019 Sep; 47(16):8913-8925. PubMed ID: 31392336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GadX/GadW-dependent regulation of the Escherichia coli acid fitness island: transcriptional control at the gadY-gadW divergent promoters and identification of four novel 42 bp GadX/GadW-specific binding sites.
    Tramonti A; De Canio M; De Biase D
    Mol Microbiol; 2008 Nov; 70(4):965-82. PubMed ID: 18808381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the Escherichia coli YcdX protein reveals a trinuclear zinc active site.
    Teplyakov A; Obmolova G; Khil PP; Howard AJ; Camerini-Otero RD; Gilliland GL
    Proteins; 2003 May; 51(2):315-8. PubMed ID: 12661000
    [No Abstract]   [Full Text] [Related]  

  • 14. Structural basis of the sulphate starvation response in E. coli: crystal structure and mutational analysis of the cofactor-binding domain of the Cbl transcriptional regulator.
    Stec E; Witkowska-Zimny M; Hryniewicz MM; Neumann P; Wilkinson AJ; Brzozowski AM; Verma CS; Zaim J; Wysocki S; Bujacz GD
    J Mol Biol; 2006 Dec; 364(3):309-22. PubMed ID: 17010379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A molecular mousetrap determines polarity of termination of DNA replication in E. coli.
    Mulcair MD; Schaeffer PM; Oakley AJ; Cross HF; Neylon C; Hill TM; Dixon NE
    Cell; 2006 Jun; 125(7):1309-19. PubMed ID: 16814717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Transcription Factor-Based Designer Macrolide Biosensors for Metabolic Engineering and Synthetic Biology.
    Kasey CM; Zerrad M; Li Y; Cropp TA; Williams GJ
    ACS Synth Biol; 2018 Jan; 7(1):227-239. PubMed ID: 28950701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative analysis of the ternary complex of RNA polymerase, cyclic AMP receptor protein and DNA by fluorescence anisotropy measurements.
    Bonarek P; Kedracka-Krok S; Kepys B; Wasylewski Z
    Acta Biochim Pol; 2008; 55(3):537-47. PubMed ID: 18787713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The yicM (nepI) gene of Escherichia coli encodes a major facilitator superfamily protein involved in efflux of purine ribonucleosides.
    Gronskiy SV; Zakataeva NP; Vitushkina MV; Ptitsyn LR; Altman IB; Novikova AE; Livshits VA
    FEMS Microbiol Lett; 2005 Sep; 250(1):39-47. PubMed ID: 16040204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quaternary structural transitions in the DeoR-type repressor UlaR control transcriptional readout from the L-ascorbate utilization regulon in Escherichia coli.
    Garces F; Fernández FJ; Gómez AM; Pérez-Luque R; Campos E; Prohens R; Aguilar J; Baldomà L; Coll M; Badía J; Vega MC
    Biochemistry; 2008 Nov; 47(44):11424-33. PubMed ID: 18844374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macrolide Biosensor Optimization through Cellular Substrate Sequestration.
    Miller CA; Ho JM; Parks SE; Bennett MR
    ACS Synth Biol; 2021 Feb; 10(2):258-264. PubMed ID: 33555859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.