These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19265711)

  • 1. The effects of human movement on the persistence of vector-borne diseases.
    Cosner C; Beier JC; Cantrell RS; Impoinvil D; Kapitanski L; Potts MD; Troyo A; Ruan S
    J Theor Biol; 2009 Jun; 258(4):550-60. PubMed ID: 19265711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid Lagrangian-Eulerian model for vector-borne diseases.
    Gao D; Yuan X
    J Math Biol; 2024 Jun; 89(2):16. PubMed ID: 38890206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relating Eulerian and Lagrangian spatial models for vector-host disease dynamics through a fundamental matrix.
    Vargas Bernal E; Saucedo O; Tien JH
    J Math Biol; 2022 Jun; 84(7):57. PubMed ID: 35676373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vector-borne disease models with Lagrangian approach.
    Gao D; Cao L
    J Math Biol; 2024 Jan; 88(2):22. PubMed ID: 38294559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmission Dynamics and Control Mechanisms of Vector-Borne Diseases with Active and Passive Movements Between Urban and Satellite Cities.
    Harvim P; Zhang H; Georgescu P; Zhang L
    Bull Math Biol; 2019 Nov; 81(11):4518-4563. PubMed ID: 31641984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An age-structured vector-borne disease model with horizontal transmission in the host.
    Wang X; Chen Y
    Math Biosci Eng; 2018 Oct; 15(5):1099-1116. PubMed ID: 30380301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The control of vector-borne disease epidemics.
    Hosack GR; Rossignol PA; van den Driessche P
    J Theor Biol; 2008 Nov; 255(1):16-25. PubMed ID: 18706917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vector-borne diseases models with residence times - A Lagrangian perspective.
    Bichara D; Castillo-Chavez C
    Math Biosci; 2016 Nov; 281():128-138. PubMed ID: 27622812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling Impact of Temperature and Human Movement on the Persistence of Dengue Disease.
    Phaijoo GR; Gurung DB
    Comput Math Methods Med; 2017; 2017():1747134. PubMed ID: 29312458
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial heterogeneity, host movement and mosquito-borne disease transmission.
    Acevedo MA; Prosper O; Lopiano K; Ruktanonchai N; Caughlin TT; Martcheva M; Osenberg CW; Smith DL
    PLoS One; 2015; 10(6):e0127552. PubMed ID: 26030769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human movement, cooperation and the effectiveness of coordinated vector control strategies.
    Stone CM; Schwab SR; Fonseca DM; Fefferman NH
    J R Soc Interface; 2017 Aug; 14(133):. PubMed ID: 28855386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Ross-Macdonald model in a patchy environment.
    Auger P; Kouokam E; Sallet G; Tchuente M; Tsanou B
    Math Biosci; 2008 Dec; 216(2):123-31. PubMed ID: 18805432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmission dynamics for vector-borne diseases in a patchy environment.
    Xiao Y; Zou X
    J Math Biol; 2014 Jul; 69(1):113-46. PubMed ID: 23732558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of a periodic tick-borne disease model with co-feeding and multiple patches.
    Zhang X; Sun B; Lou Y
    J Math Biol; 2021 Mar; 82(4):27. PubMed ID: 33656643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models for the effects of host movement in vector-borne disease systems.
    Cosner C
    Math Biosci; 2015 Dec; 270(Pt B):192-7. PubMed ID: 26160031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of human movement in the transmission of vector-borne pathogens.
    Stoddard ST; Morrison AC; Vazquez-Prokopec GM; Paz Soldan V; Kochel TJ; Kitron U; Elder JP; Scott TW
    PLoS Negl Trop Dis; 2009 Jul; 3(7):e481. PubMed ID: 19621090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-stage Vector-Borne Zoonoses Models: A Global Analysis.
    Bichara D; Iggidr A; Smith L
    Bull Math Biol; 2018 Jul; 80(7):1810-1848. PubMed ID: 29696599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia.
    Barrios E; Lee S; Vasilieva O
    J Theor Biol; 2018 Sep; 453():14-39. PubMed ID: 29775680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-patch model for the spread of West Nile virus.
    Zhang J; Cosner C; Zhu H
    Bull Math Biol; 2018 Apr; 80(4):840-863. PubMed ID: 29492829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An SIS patch model with variable transmission coefficients.
    Gao D; Ruan S
    Math Biosci; 2011 Aug; 232(2):110-5. PubMed ID: 21619886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.