These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 19265711)

  • 21. Asymptotic analysis of a vector-borne disease model with the age of infection.
    Wang X; Chen Y; Martcheva M; Rong L
    J Biol Dyn; 2020 Dec; 14(1):332-367. PubMed ID: 32324106
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessing the role of spatial heterogeneity and human movement in malaria dynamics and control.
    Prosper O; Ruktanonchai N; Martcheva M
    J Theor Biol; 2012 Jun; 303():1-14. PubMed ID: 22525434
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Global analysis of multi-host and multi-vector epidemic models.
    Bichara DM
    J Math Anal Appl; 2019 Jul; 475(2):1532-1553. PubMed ID: 32287387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SIS and SIR Epidemic Models Under Virtual Dispersal.
    Bichara D; Kang Y; Castillo-Chavez C; Horan R; Perrings C
    Bull Math Biol; 2015 Nov; 77(11):2004-34. PubMed ID: 26489419
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epidemic dynamics of a vector-borne disease on a villages-and-city star network with commuters.
    Mpolya EA; Yashima K; Ohtsuki H; Sasaki A
    J Theor Biol; 2014 Feb; 343():120-6. PubMed ID: 24321227
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impact of venereal transmission on the dynamics of vertically transmitted viral diseases among mosquitoes.
    Nadim SS; Ghosh I; Martcheva M; Chattopadhyay J
    Math Biosci; 2020 Jul; 325():108366. PubMed ID: 32387647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A multi-species epidemic model with spatial dynamics.
    Arino J; Davis JR; Hartley D; Jordan R; Miller JM; van den Driessche P
    Math Med Biol; 2005 Jun; 22(2):129-42. PubMed ID: 15778332
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vector-borne disease problems in rapid urbanization: new approaches to vector control.
    Knudsen AB; Slooff R
    Bull World Health Organ; 1992; 70(1):1-6. PubMed ID: 1568273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vector dynamics influence spatially imperfect genetic interventions against disease.
    Yuksel MK; Remien CH; Karki B; Bull JJ; Krone SM
    Evol Med Public Health; 2021; 9(1):1-10. PubMed ID: 33664955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamical behaviors of a vector-borne diseases model with two time delays on bipartite networks.
    Zhao R; Liu Q; Zhang H
    Math Biosci Eng; 2021 Apr; 18(4):3073-3091. PubMed ID: 34198376
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hypothesis for explaining single outbreaks (like the Black Death in European cities) of vector-borne infections.
    Burattini MN; Coutinho FA; Massad E
    Med Hypotheses; 2009 Jul; 73(1):110-4. PubMed ID: 19264416
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mosquito-borne transmission in urban landscapes: the missing link between vector abundance and human density.
    Romeo-Aznar V; Paul R; Telle O; Pascual M
    Proc Biol Sci; 2018 Aug; 285(1884):. PubMed ID: 30111594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptive dispersal effect on the spread of a disease in a patchy environment.
    Cheng CY
    Appl Math Model; 2017 Jul; 47():17-30. PubMed ID: 32287941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission.
    Roche B; Guégan JF; Bousquet F
    BMC Bioinformatics; 2008 Oct; 9():435. PubMed ID: 18922166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Malaria drug resistance: the impact of human movement and spatial heterogeneity.
    Agusto FB
    Bull Math Biol; 2014 Jul; 76(7):1607-41. PubMed ID: 24859827
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis on a diffusive SIS epidemic system with linear source and frequency-dependent incidence function in a heterogeneous environment.
    Suo JZ; Li B
    Math Biosci Eng; 2019 Oct; 17(1):418-441. PubMed ID: 31731359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Air travel and vector-borne disease movement.
    Tatem AJ; Huang Z; Das A; Qi Q; Roth J; Qiu Y
    Parasitology; 2012 Dec; 139(14):1816-30. PubMed ID: 22444826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Network-level reproduction number and extinction threshold for vector-borne diseases.
    Xue L; Scoglio C
    Math Biosci Eng; 2015 Jun; 12(3):565-84. PubMed ID: 25811553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Global dynamics of an SEIR epidemic model with saturating contact rate.
    Zhang J; Ma Z
    Math Biosci; 2003 Sep; 185(1):15-32. PubMed ID: 12900140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.