These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 19265992)
61. Use of entomopathogenic nematodes to suppress Meloidogyne incognita on greenhouse tomatoes. Pérez EE; Lewis EE J Nematol; 2002 Jun; 34(2):171-4. PubMed ID: 19265927 [TBL] [Abstract][Full Text] [Related]
62. A Comparison of Entomopathogenic Nematode Longevity in Soil under Laboratory Conditions. Shapiro-Ilan DI; Stuart RJ; McCoy CW J Nematol; 2006 Mar; 38(1):119-29. PubMed ID: 19259437 [TBL] [Abstract][Full Text] [Related]
63. In vitro infection of sheep lice (Bovicola ovis Schrank) by Steinernematid and Heterorhabditid nematodes. James PJ; Hook SE; Pepper PM Vet Parasitol; 2010 Nov; 174(1-2):85-91. PubMed ID: 20800970 [TBL] [Abstract][Full Text] [Related]
64. Intraspecific virulence of entomopathogenic nematodes against the pests Campos-Herrera R; Vicente-Díez I; Galeano M; Chelkha M; Del Mar González-Trujillo M; Puelles M; Labarga D; Pou A; Calvo J; Belda JE J Nematol; 2021; 53():. PubMed ID: 34957410 [TBL] [Abstract][Full Text] [Related]
65. Effect of Soil Depth and Moisture on the Vertical Distribution of Steinernema riobrave (Nematoda: Steinernematidae). Gouge DH; Smith KA; Lee LL; Henneberry TJ J Nematol; 2000 Jun; 32(2):223-8. PubMed ID: 19270970 [TBL] [Abstract][Full Text] [Related]
66. Control of the Oriental Fruit Moth, Grapholita molesta, Using Entomopathogenic Nematodes in Laboratory and Fruit Bin Assays. Riga E; Lacey LA; Guerra N; Headrick HL J Nematol; 2006 Mar; 38(1):168-71. PubMed ID: 19259443 [TBL] [Abstract][Full Text] [Related]
67. Biocontrol of Wireworms (Coleoptera: Elateridae) Using Entomopathogenic Nematodes: The Impact of Infected Host Cadaver Application and Soil Characteristics. Sandhi RK; Shapiro-Ilan D; Ivie M; Reddy GVP Environ Entomol; 2021 Aug; 50(4):868-877. PubMed ID: 34032820 [TBL] [Abstract][Full Text] [Related]
68. Scavenging behavior and interspecific competition decrease offspring fitness of the entomopathogenic nematode Steinernema feltiae. Blanco-Pérez R; Bueno-Pallero FÁ; Vicente-Díez I; Marco-Mancebón VS; Pérez-Moreno I; Campos-Herrera R J Invertebr Pathol; 2019 Jun; 164():5-15. PubMed ID: 30974088 [TBL] [Abstract][Full Text] [Related]
70. Effect of an Alltech soil health product on entomopathogenic nematodes, root-knot nematodes and on the growth of tomato plants in the greenhouse. Pulavarty A; Horgan K; Kakouli-Duarte T J Nematol; 2020; 52():1-10. PubMed ID: 32191018 [TBL] [Abstract][Full Text] [Related]
71. Natural occurrence and distribution of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in Viti Levu, Fiji Islands. Brodie G J Nematol; 2020; 52():1-17. PubMed ID: 32191017 [TBL] [Abstract][Full Text] [Related]
72. Efficacy of entomopathogenic nematodes in insect cadaver formulation against engorged females of Rhipicephalus microplus (Acari: Ixodidae) in semi-field conditions. Monteiro C; Coelho L; de Paula LGF; Fernandes ÉKK; Dolinski C; Bittencourt VREP; Furlong J; Prata MCA Ticks Tick Borne Dis; 2020 Jan; 11(1):101313. PubMed ID: 31704209 [TBL] [Abstract][Full Text] [Related]
73. Viability and Virulence of Entomopathogenic Nematodes Exposed to Ultraviolet Radiation. Shapiro-Ilan DI; Hazir S; Lete L J Nematol; 2015 Sep; 47(3):184-9. PubMed ID: 26527839 [TBL] [Abstract][Full Text] [Related]
75. Infectivity of Four Entomopathogenic Nematodes in Relation to Environmental Factors and Their Effects on the Biochemistry of the Medfly Ceratitis capitata (Wied.) (Diptera: Tephritidae). Shaurub EH; Soliman NA; Hashem AG; Abdel-Rahman AM Neotrop Entomol; 2015 Dec; 44(6):610-8. PubMed ID: 26391517 [TBL] [Abstract][Full Text] [Related]
76. Diversity and phylogenetic relationships of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from the Sky Islands of Southern Arizona. Stock SP; Gress JC J Invertebr Pathol; 2006 Jun; 92(2):66-72. PubMed ID: 16554068 [TBL] [Abstract][Full Text] [Related]
77. Reproductive efficiency of entomopathogenic nematodes as scavengers. Are they able to fight for insect's cadavers? Blanco-Pérez R; Bueno-Pallero FÁ; Neto L; Campos-Herrera R J Invertebr Pathol; 2017 Sep; 148():1-9. PubMed ID: 28499929 [TBL] [Abstract][Full Text] [Related]
78. Effect of low temperatures on mortality and oviposition in conjunction with climate mapping to predict spread of the root weevil Diaprepes abbreviatus and introduced natural enemies. Lapointe SL; Borchert DM; Hall DG Environ Entomol; 2007 Feb; 36(1):73-82. PubMed ID: 17349119 [TBL] [Abstract][Full Text] [Related]
79. Aggregative group behavior in insect parasitic nematode dispersal. Shapiro-Ilan DI; Lewis EE; Schliekelman P Int J Parasitol; 2014 Jan; 44(1):49-54. PubMed ID: 24184157 [TBL] [Abstract][Full Text] [Related]
80. Concilience in Entomopathogenic Nematode Responses to Water Potential and Their Geospatial Patterns in Florida. El-Borai F; Killiny N; Duncan LW Front Microbiol; 2016; 7():356. PubMed ID: 27064422 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]