These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19266021)

  • 21. The INT1 of Candida albicans.
    Calderone R
    Trends Microbiol; 1998 Aug; 6(8):300-1; discussion 302-3. PubMed ID: 9746938
    [No Abstract]   [Full Text] [Related]  

  • 22. Centromere size and position in Candida albicans are evolutionarily conserved independent of DNA sequence heterogeneity.
    Mishra PK; Baum M; Carbon J
    Mol Genet Genomics; 2007 Oct; 278(4):455-65. PubMed ID: 17588175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rap1 in Candida albicans: an unusual structural organization and a critical function in suppressing telomere recombination.
    Yu EY; Yen WF; Steinberg-Neifach O; Lue NF
    Mol Cell Biol; 2010 Mar; 30(5):1254-68. PubMed ID: 20008550
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transcriptional rewiring: the proof is in the eating.
    Rokas A; Hittinger CT
    Curr Biol; 2007 Aug; 17(16):R626-8. PubMed ID: 17714646
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The ALS gene family of Candida albicans.
    Hoyer LL
    Trends Microbiol; 2001 Apr; 9(4):176-80. PubMed ID: 11286882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide functional analysis in Candida albicans.
    Motaung TE; Ells R; Pohl CH; Albertyn J; Tsilo TJ
    Virulence; 2017 Nov; 8(8):1563-1579. PubMed ID: 28277904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A GCN-like response in Candida albicans.
    Pereira SA; Livi GP
    Cell Biol Int; 1995 Jan; 19(1):65-9. PubMed ID: 7613513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution in Candida albicans populations during a single passage through a mouse host.
    Forche A; Magee PT; Selmecki A; Berman J; May G
    Genetics; 2009 Jul; 182(3):799-811. PubMed ID: 19414562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pan-Domain Analysis of ZIP Zinc Transporters.
    Lehtovirta-Morley LE; Alsarraf M; Wilson D
    Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29211002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diversification of DNA binding specificities enabled SREBP transcription regulators to expand the repertoire of cellular functions that they govern in fungi.
    Del Olmo Toledo V; Puccinelli R; Fordyce PM; Pérez JC
    PLoS Genet; 2018 Dec; 14(12):e1007884. PubMed ID: 30596634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trends and highlights in Candida research. The 8th ASM Conference about Candida and Candidiasis, Denver (Colorado, USA), 13-17 March 2006.
    Klis FM; De Groot PW
    FEMS Yeast Res; 2006 Jun; 6(4):667-8. PubMed ID: 16696664
    [No Abstract]   [Full Text] [Related]  

  • 32. CSE4 genetically interacts with the Saccharomyces cerevisiae centromere DNA elements CDE I and CDE II but not CDE III. Implications for the path of the centromere dna around a cse4p variant nucleosome.
    Keith KC; Fitzgerald-Hayes M
    Genetics; 2000 Nov; 156(3):973-81. PubMed ID: 11063678
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of aneuploidy in the emergence of echinocandin resistance in human fungal pathogen Candida albicans.
    Sah SK; Hayes JJ; Rustchenko E
    PLoS Pathog; 2021 May; 17(5):e1009564. PubMed ID: 34043737
    [No Abstract]   [Full Text] [Related]  

  • 34. Ndt80p is involved in L-sorbose utilization through regulating SOU1 in Candida albicans.
    Lo HJ; Chu WL; Liou CH; Huang SH; Khoo KH; Yang YL
    Int J Med Microbiol; 2015 Jan; 305(1):170-3. PubMed ID: 25497969
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Genomic analysis in Candida albicans].
    Chibana H; Mikami Y
    Nihon Ishinkin Gakkai Zasshi; 2003; 44(2):81-5. PubMed ID: 12748588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptional activation domains of the Candida albicans Gcn4p and Gal4p homologs.
    Martchenko M; Levitin A; Whiteway M
    Eukaryot Cell; 2007 Feb; 6(2):291-301. PubMed ID: 17158732
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatial inter-centromeric interactions facilitated the emergence of evolutionary new centromeres.
    Guin K; Chen Y; Mishra R; Muzaki SRB; Thimmappa BC; O'Brien CE; Butler G; Sanyal A; Sanyal K
    Elife; 2020 May; 9():. PubMed ID: 32469306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Candida albicans mutant construction and characterization of selected virulence determinants.
    Motaung TE; Albertyn J; Pohl CH; Köhler G
    J Microbiol Methods; 2015 Aug; 115():153-65. PubMed ID: 26073905
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of filament formation in Candida albicans by the transcriptional repressor TUP1.
    Braun BR; Johnson AD
    Science; 1997 Jul; 277(5322):105-9. PubMed ID: 9204892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diminished Expression Alleles for Analysis of Virulence Traits and Genetic Interactions in Candida albicans.
    Woolford CA; Mitchell AP
    Methods Mol Biol; 2021; 2260():1-13. PubMed ID: 33405027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.