These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 19266224)

  • 1. Three-dimensional fibril-reinforced finite element model of articular cartilage.
    Li LP; Cheung JT; Herzog W
    Med Biol Eng Comput; 2009 Jun; 47(6):607-15. PubMed ID: 19266224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of articular cartilage by combining microscopic analysis with a fibril-reinforced finite-element model.
    Julkunen P; Kiviranta P; Wilson W; Jurvelin JS; Korhonen RK
    J Biomech; 2007; 40(8):1862-70. PubMed ID: 17052722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fibril-reinforced poroviscoelastic swelling model for articular cartilage.
    Wilson W; van Donkelaar CC; van Rietbergen B; Huiskes R
    J Biomech; 2005 Jun; 38(6):1195-204. PubMed ID: 15863103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of mechanical behavior of articular cartilage by fibril reinforced poroelastic models.
    Li L; Shirazi-Adl A; Buschmann MD
    Biorheology; 2003; 40(1-3):227-33. PubMed ID: 12454409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of collagen orientation and depth-dependent fixed charge densities of cartilage on mechanical behavior of chondrocytes.
    Korhonen RK; Julkunen P; Wilson W; Herzog W
    J Biomech Eng; 2008 Apr; 130(2):021003. PubMed ID: 18412490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biphasic viscohyperelastic fibril-reinforced model for articular cartilage: formulation and comparison with experimental data.
    García JJ; Cortés DH
    J Biomech; 2007; 40(8):1737-44. PubMed ID: 17014853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of superficial collagen patterns and fibrillation of femoral articular cartilage on knee joint mechanics-a 3D finite element analysis.
    Mononen ME; Mikkola MT; Julkunen P; Ojala R; Nieminen MT; Jurvelin JS; Korhonen RK
    J Biomech; 2012 Feb; 45(3):579-87. PubMed ID: 22137088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of depth-wise distribution of collagen and proteoglycans in articular cartilage--a 3D finite element study of stresses and strains in human knee joint.
    Halonen KS; Mononen ME; Jurvelin JS; Töyräs J; Korhonen RK
    J Biomech; 2013 Apr; 46(6):1184-92. PubMed ID: 23384762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain-rate dependence of cartilage stiffness in unconfined compression: the role of fibril reinforcement versus tissue volume change in fluid pressurization.
    Li LP; Herzog W
    J Biomech; 2004 Mar; 37(3):375-82. PubMed ID: 14757457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep vertical collagen fibrils play a significant role in mechanics of articular cartilage.
    Shirazi R; Shirazi-Adl A
    J Orthop Res; 2008 May; 26(5):608-15. PubMed ID: 18050338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncertainties in indentation testing of articular cartilage: a fibril-reinforced poroviscoelastic study.
    Julkunen P; Korhonen RK; Herzog W; Jurvelin JS
    Med Eng Phys; 2008 May; 30(4):506-15. PubMed ID: 17629536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A human knee joint model considering fluid pressure and fiber orientation in cartilages and menisci.
    Gu KB; Li LP
    Med Eng Phys; 2011 May; 33(4):497-503. PubMed ID: 21208821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poroviscoelastic finite element model including continuous fiber distribution for the simulation of nanoindentation tests on articular cartilage.
    Taffetani M; Griebel M; Gastaldi D; Klisch SM; Vena P
    J Mech Behav Biomed Mater; 2014 Apr; 32():17-30. PubMed ID: 24389384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.
    Wu JZ; Herzog W; Epstein M
    J Biomech; 1998 Feb; 31(2):165-9. PubMed ID: 9593211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational assessment on the impact of collagen fiber orientation in cartilages on healthy and arthritic knee kinetics/kinematics.
    Raju V; Koorata PK
    Med Eng Phys; 2023 Jul; 117():103997. PubMed ID: 37331751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly nonlinear stress-relaxation response of articular cartilage in indentation: Importance of collagen nonlinearity.
    Mäkelä JTA; Korhonen RK
    J Biomech; 2016 Jun; 49(9):1734-1741. PubMed ID: 27130474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain-rate dependent stiffness of articular cartilage in unconfined compression.
    Li LP; Buschmann MD; Shirazi-Adl A
    J Biomech Eng; 2003 Apr; 125(2):161-8. PubMed ID: 12751277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of fibril reinforcement in the mechanical behavior of cartilage.
    Li L; Buschmann MD; Shirazi-Adl A
    Biorheology; 2002; 39(1-2):89-96. PubMed ID: 12082271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling sample/patient-specific structural and diffusional responses of cartilage using DT-MRI.
    Pierce DM; Ricken T; Holzapfel GA
    Int J Numer Method Biomed Eng; 2013 Aug; 29(8):807-21. PubMed ID: 23345039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stresses in the local collagen network of articular cartilage: a poroviscoelastic fibril-reinforced finite element study.
    Wilson W; van Donkelaar CC; van Rietbergen B; Ito K; Huiskes R
    J Biomech; 2004 Mar; 37(3):357-66. PubMed ID: 14757455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.