These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19267210)

  • 1. Variation of cholinergic biomarkers in brain regions and blood components of captive mink.
    Basu N; Scheuhammer A; Rouvinen-Watt K; Grochowina N; Evans D; Chan HM
    Environ Monit Assess; 2010 Mar; 162(1-4):377-86. PubMed ID: 19267210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylmercury impairs components of the cholinergic system in captive mink (Mustela vison).
    Basu N; Scheuhammer AM; Rouvinen-Watt K; Grochowina N; Klenavic K; Evans RD; Chan HM
    Toxicol Sci; 2006 May; 91(1):202-9. PubMed ID: 16446290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary and in utero exposure to a pentabrominated diphenyl ether mixture did not affect cholinergic parameters in the cerebral cortex of ranch mink (Mustela vison).
    Bull K; Basu N; Zhang S; Martin JW; Bursian S; Martin P; Chan LH
    Toxicol Sci; 2007 Mar; 96(1):115-22. PubMed ID: 17150973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of mercury on muscarinic cholinergic receptor subtypes (M1 and M2) in captive mink.
    Basu N; Scheuhammer AM; Rouvinen-Watt K; Evans RD; Grochowina N; Chan LH
    Neurotoxicology; 2008 Mar; 29(2):328-34. PubMed ID: 18295336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and whole animal evidence that methylmercury disrupts GABAergic systems in discrete brain regions in captive mink.
    Basu N; Scheuhammer AM; Rouvinen-Watt K; Evans RD; Trudeau VL; Chan LH
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Apr; 151(3):379-85. PubMed ID: 20060493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer's disease.
    Araujo DM; Lapchak PA; Robitaille Y; Gauthier S; Quirion R
    J Neurochem; 1988 Jun; 50(6):1914-23. PubMed ID: 3373218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased N-methyl-D-aspartic acid (NMDA) receptor levels are associated with mercury exposure in wild and captive mink.
    Basu N; Scheuhammer AM; Rouvinen-Watt K; Grochowina N; Evans RD; O'Brien M; Chan HM
    Neurotoxicology; 2007 May; 28(3):587-93. PubMed ID: 17267038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinergic activity in autism: abnormalities in the cerebral cortex and basal forebrain.
    Perry EK; Lee ML; Martin-Ruiz CM; Court JA; Volsen SG; Merrit J; Folly E; Iversen PE; Bauman ML; Perry RH; Wenk GL
    Am J Psychiatry; 2001 Jul; 158(7):1058-66. PubMed ID: 11431227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative ontogenic profile of cholinergic markers, including nicotinic and muscarinic receptors, in the rat brain.
    Aubert I; Cécyre D; Gauthier S; Quirion R
    J Comp Neurol; 1996 May; 369(1):31-55. PubMed ID: 8723701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regional distribution of the muscarinic cholinoceptor and acetylcholinesterase in guinea pig brain.
    Dawson RM; Jarrott B
    Neurochem Res; 1980 Aug; 5(8):809-15. PubMed ID: 7464985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and autoradiographic distribution of hemicholinium-3 high-affinity choline uptake sites in mammalian brain.
    Quirion R
    Synapse; 1987; 1(4):293-303. PubMed ID: 3138770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localisation of pre- and postsynaptic cholinergic markers in the human brain.
    Wevers A
    Behav Brain Res; 2011 Aug; 221(2):341-55. PubMed ID: 20170687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple Roles for Cholinergic Signaling from the Perspective of Stem Cell Function.
    Takahashi T
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33440882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of choline acetyltransferase, acetylcholinesterase, muscarinic receptor binding, and choline uptake in discrete areas of the rat medulla oblongata.
    Simon JR; Oderfeld-Nowak B; Felten DL; Aprison MH
    Neurochem Res; 1981 May; 6(5):497-505. PubMed ID: 7279110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinergic receptor site binding, choline acetyltransferase, and acetylcholinesterase activity in the forebrain and brainstem of the Dahl rat model of essential hypertension.
    Edwards E; McCaughran JA; Friedman R; McNally W; Schechter N
    Clin Exp Hypertens A; 1983; 5(10):1683-702. PubMed ID: 6667556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cholinergic system in Alzheimer's disease.
    Kása P; Rakonczay Z; Gulya K
    Prog Neurobiol; 1997 Aug; 52(6):511-35. PubMed ID: 9316159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional concentration of putative nicotinic-cholinergic receptor sites in human brain.
    Volpe BT; Francis A; Gazzaniga MS; Schechter N
    Exp Neurol; 1979 Dec; 66(3):737-44. PubMed ID: 114410
    [No Abstract]   [Full Text] [Related]  

  • 18. Regional circadian variation of acetylcholine muscarinic receptors in the rat brain.
    Por SB; Bondy SC
    J Neurosci Res; 1981; 6(3):315-8. PubMed ID: 7299844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of mercury on neurochemical receptor-binding characteristics in wild mink.
    Basu N; Klenavic K; Gamberg M; O'Brien M; Evans D; Scheuhammer AM; Chan HM
    Environ Toxicol Chem; 2005 Jun; 24(6):1444-50. PubMed ID: 16117121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian rhythms in neurotransmitter receptors in discrete rat brain regions.
    Kafka MS; Benedito MA; Blendy JA; Tokola NS
    Chronobiol Int; 1986; 3(2):91-100. PubMed ID: 2824075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.