These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 19267259)
1. In vivo study of porous strontium-doped calcium polyphosphate scaffolds for bone substitute applications. Tian M; Chen F; Song W; Song Y; Chen Y; Wan C; Yu X; Zhang X J Mater Sci Mater Med; 2009 Jul; 20(7):1505-12. PubMed ID: 19267259 [TBL] [Abstract][Full Text] [Related]
2. Acceleration of segmental bone regeneration in a rabbit model by strontium-doped calcium polyphosphate scaffold through stimulating VEGF and bFGF secretion from osteoblasts. Gu Z; Zhang X; Li L; Wang Q; Yu X; Feng T Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):274-81. PubMed ID: 25428072 [TBL] [Abstract][Full Text] [Related]
3. Cell-mediated degradation of strontium-doped calcium polyphosphate scaffold for bone tissue engineering. Gu Z; Wang H; Li L; Wang Q; Yu X Biomed Mater; 2012 Dec; 7(6):065007. PubMed ID: 23186786 [TBL] [Abstract][Full Text] [Related]
4. Application of strontium-doped calcium polyphosphate scaffold on angiogenesis for bone tissue engineering. Gu Z; Xie H; Li L; Zhang X; Liu F; Yu X J Mater Sci Mater Med; 2013 May; 24(5):1251-60. PubMed ID: 23430336 [TBL] [Abstract][Full Text] [Related]
5. Application of K/Sr co-doped calcium polyphosphate bioceramic as scaffolds for bone substitutes. Xie H; Wang Q; Ye Q; Wan C; Li L J Mater Sci Mater Med; 2012 Apr; 23(4):1033-44. PubMed ID: 22311075 [TBL] [Abstract][Full Text] [Related]
6. Surface modification of strontium-doped porous bioactive ceramic scaffolds via poly(DOPA) coating and immobilizing silk fibroin for excellent angiogenic and osteogenic properties. Wang X; Gu Z; Jiang B; Li L; Yu X Biomater Sci; 2016 Apr; 4(4):678-88. PubMed ID: 26870855 [TBL] [Abstract][Full Text] [Related]
7. Research on the inhibition for aseptic loosening of artificial joints by Sr-doped calcium polyphosphate (SCPP) Peng X; Li Y; Cheng C; Ning W; Yu X Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34493695 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the degradation, biocompatibility and osteogenesis behavior of lithium-doped calcium polyphosphate for bone tissue engineering. Ma Y; Li Y; Hao J; Ma B; Di T; Dong H Biomed Mater Eng; 2019; 30(1):23-36. PubMed ID: 30530956 [TBL] [Abstract][Full Text] [Related]
9. In vitro study of strontium doped calcium polyphosphate-modified arteries fixed by dialdehyde carboxymethyl cellulose for vascular scaffolds. Wang X; Tang P; Xu Y; Yang X; Yu X Int J Biol Macromol; 2016 Dec; 93(Pt B):1583-1590. PubMed ID: 27103494 [TBL] [Abstract][Full Text] [Related]
10. In vitro study on the influence of strontium-doped calcium polyphosphate on the angiogenesis-related behaviors of HUVECs. Chen YW; Shi GQ; Ding YL; Yu XX; Zhang XH; Zhao CS; Wan CX J Mater Sci Mater Med; 2008 Jul; 19(7):2655-62. PubMed ID: 18197373 [TBL] [Abstract][Full Text] [Related]
11. In vitro study in stimulating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering. Liu F; Zhang X; Yu X; Xu Y; Feng T; Ren D J Mater Sci Mater Med; 2011 Mar; 22(3):683-92. PubMed ID: 21287239 [TBL] [Abstract][Full Text] [Related]
12. Repairing defect and preventing collapse of femoral head in a steroid-induced osteonecrotic of femoral head animal model using strontium-doped calcium polyphosphate combined BM-MNCs. Kang P; Xie X; Tan Z; Yang J; Shen B; Zhou Z; Pei F J Mater Sci Mater Med; 2015 Feb; 26(2):80. PubMed ID: 25634136 [TBL] [Abstract][Full Text] [Related]
13. The inhibitory effect of strontium-doped calcium polyphosphate particles on cytokines from macrophages and osteoblasts leading to aseptic loosening in vitro. Huang C; Li L; Yu X; Gu Z; Zhang X Biomed Mater; 2014 Apr; 9(2):025010. PubMed ID: 24518283 [TBL] [Abstract][Full Text] [Related]
14. Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds. Qiu K; Zhao XJ; Wan CX; Zhao CS; Chen YW Biomaterials; 2006 Mar; 27(8):1277-86. PubMed ID: 16143392 [TBL] [Abstract][Full Text] [Related]
15. Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects. Hu B; Meng ZD; Zhang YQ; Ye LY; Wang CJ; Guo WC Tissue Cell; 2020 Oct; 66():101386. PubMed ID: 32933709 [TBL] [Abstract][Full Text] [Related]
16. A novel strontium-doped calcium polyphosphate/erythromycin/poly(vinyl alcohol) composite for bone tissue engineering. Song W; Ren W; Wan C; Esquivel AO; Shi T; Blasier R; Markel DC J Biomed Mater Res A; 2011 Sep; 98(3):359-71. PubMed ID: 21626667 [TBL] [Abstract][Full Text] [Related]
17. 3D Printed Osteoblast-Alginate/Collagen Hydrogels Promote Survival, Proliferation and Mineralization at Low Doses of Strontium Calcium Polyphosphate. Tharakan S; Khondkar S; Lee S; Ahn S; Mathew C; Gresita A; Hadjiargyrou M; Ilyas A Pharmaceutics; 2022 Dec; 15(1):. PubMed ID: 36678641 [TBL] [Abstract][Full Text] [Related]
18. A promising scaffold with excellent cytocompatibility and pro-angiogenesis action for dental tissue engineering: Strontium-doped calcium polyphosphate. Qin H; Yang Z; Li L; Yang X; Liu J; Chen X; Yu X Dent Mater J; 2016; 35(2):241-9. PubMed ID: 27041014 [TBL] [Abstract][Full Text] [Related]
19. Effects of Pore Size on the Osteoconductivity and Mechanical Properties of Calcium Phosphate Cement in a Rabbit Model. Zhao YN; Fan JJ; Li ZQ; Liu YW; Wu YP; Liu J Artif Organs; 2017 Feb; 41(2):199-204. PubMed ID: 27401022 [TBL] [Abstract][Full Text] [Related]
20. Solid freeform fabrication of porous calcium polyphosphate structures for bone substitute applications: in vivo studies. Shanjani Y; Hu Y; Toyserkani E; Grynpas M; Kandel RA; Pilliar RM J Biomed Mater Res B Appl Biomater; 2013 Aug; 101(6):972-80. PubMed ID: 23529933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]