These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

523 related articles for article (PubMed ID: 19267489)

  • 1. Magainin 2-induced pore formation in the lipid membranes depends on its concentration in the membrane interface.
    Tamba Y; Yamazaki M
    J Phys Chem B; 2009 Apr; 113(14):4846-52. PubMed ID: 19267489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability.
    Tamba Y; Yamazaki M
    Biochemistry; 2005 Dec; 44(48):15823-33. PubMed ID: 16313185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes.
    Tamba Y; Ariyama H; Levadny V; Yamazaki M
    J Phys Chem B; 2010 Sep; 114(37):12018-26. PubMed ID: 20799752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Lipid Composition on the Entry of Cell-Penetrating Peptide Oligoarginine into Single Vesicles.
    Sharmin S; Islam MZ; Karal MA; Alam Shibly SU; Dohra H; Yamazaki M
    Biochemistry; 2016 Aug; 55(30):4154-65. PubMed ID: 27420912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced membrane pore formation by multimeric/oligomeric antimicrobial peptides.
    Arnusch CJ; Branderhorst H; de Kruijff B; Liskamp RM; Breukink E; Pieters RJ
    Biochemistry; 2007 Nov; 46(46):13437-42. PubMed ID: 17944489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of Initial Stage of Pore Formation Induced by Antimicrobial Peptide Magainin 2.
    Hasan M; Karal MAS; Levadnyy V; Yamazaki M
    Langmuir; 2018 Mar; 34(10):3349-3362. PubMed ID: 29446954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial Peptide Lactoferricin B-Induced Rapid Leakage of Internal Contents from Single Giant Unilamellar Vesicles.
    Moniruzzaman M; Alam JM; Dohra H; Yamazaki M
    Biochemistry; 2015 Sep; 54(38):5802-14. PubMed ID: 26368853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magainin 2 channel formation in planar lipid membranes: the role of lipid polar groups and ergosterol.
    Gallucci E; Meleleo D; Micelli S; Picciarelli V
    Eur Biophys J; 2003 Mar; 32(1):22-32. PubMed ID: 12632203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate constant of tension-induced pore formation in lipid membranes.
    Levadny V; Tsuboi TA; Belaya M; Yamazaki M
    Langmuir; 2013 Mar; 29(12):3848-52. PubMed ID: 23472875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores.
    Islam MZ; Ariyama H; Alam JM; Yamazaki M
    Biochemistry; 2014 Jan; 53(2):386-96. PubMed ID: 24397335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The single-giant unilamellar vesicle method reveals lysenin-induced pore formation in lipid membranes containing sphingomyelin.
    Alam JM; Kobayashi T; Yamazaki M
    Biochemistry; 2012 Jun; 51(25):5160-72. PubMed ID: 22668506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stretch-activated pore of the antimicrobial peptide, magainin 2.
    Karal MA; Alam JM; Takahashi T; Levadny V; Yamazaki M
    Langmuir; 2015 Mar; 31(11):3391-401. PubMed ID: 25746858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship of membrane curvature to the formation of pores by magainin 2.
    Matsuzaki K; Sugishita K; Ishibe N; Ueha M; Nakata S; Miyajima K; Epand RM
    Biochemistry; 1998 Aug; 37(34):11856-63. PubMed ID: 9718308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of synergism between antimicrobial peptides magainin 2 and PGLa.
    Matsuzaki K; Mitani Y; Akada KY; Murase O; Yoneyama S; Zasloff M; Miyajima K
    Biochemistry; 1998 Oct; 37(43):15144-53. PubMed ID: 9790678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A membrane filtering method for the purification of giant unilamellar vesicles.
    Tamba Y; Terashima H; Yamazaki M
    Chem Phys Lipids; 2011 Jul; 164(5):351-8. PubMed ID: 21524642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magainin 2 amide interaction with lipid membranes: calorimetric detection of peptide binding and pore formation.
    Wenk MR; Seelig J
    Biochemistry; 1998 Mar; 37(11):3909-16. PubMed ID: 9521712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of constant tension-induced rupture of lipid membranes using activation energy.
    Karal MA; Levadnyy V; Yamazaki M
    Phys Chem Chem Phys; 2016 May; 18(19):13487-95. PubMed ID: 27125194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides.
    Papo N; Shai Y
    Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Revealing the lytic mechanism of the antimicrobial peptide gomesin by observing giant unilamellar vesicles.
    Domingues TM; Riske KA; Miranda A
    Langmuir; 2010 Jul; 26(13):11077-84. PubMed ID: 20356040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformation and poration of giant unilamellar vesicles induced by anionic nanoparticles.
    Karal MAS; Ahammed S; Levadny V; Belaya M; Ahamed MK; Ahmed M; Mahbub ZB; Ullah AKMA
    Chem Phys Lipids; 2020 Aug; 230():104916. PubMed ID: 32407734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.