These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19267674)

  • 21. Bacterial proteins fold faster than eukaryotic proteins with simple folding kinetics.
    Galzitskaya OV; Bogatyreva NS; Glyakina AV
    Biochemistry (Mosc); 2011 Feb; 76(2):225-35. PubMed ID: 21568856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FISH Amyloid - a new method for finding amyloidogenic segments in proteins based on site specific co-occurrence of aminoacids.
    Gasior P; Kotulska M
    BMC Bioinformatics; 2014 Feb; 15():54. PubMed ID: 24564523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The construction of an amino acid network for understanding protein structure and function.
    Yan W; Zhou J; Sun M; Chen J; Hu G; Shen B
    Amino Acids; 2014 Jun; 46(6):1419-39. PubMed ID: 24623120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physicochemical and Structural Studies on Shaping of β-hairpin in Proteins as a First Stage of Amyloid Formation.
    Makowska J
    Curr Protein Pept Sci; 2017; 18(12):1244-1253. PubMed ID: 28521710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In silico prediction of novel residues involved in amyloid primary nucleation of human I56T and D67H lysozyme.
    Griffin JWD; Bradshaw PC
    BMC Struct Biol; 2018 Jul; 18(1):9. PubMed ID: 30029603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Statistical mechanics of protein folding by cluster distance geometry.
    Crippen GM
    Biopolymers; 2004 Oct; 75(3):278-89. PubMed ID: 15378485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NIAS-Server: Neighbors Influence of Amino acids and Secondary Structures in Proteins.
    Borguesan B; Inostroza-Ponta M; Dorn M
    J Comput Biol; 2017 Mar; 24(3):255-265. PubMed ID: 27494258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein contacts, inter-residue interactions and side-chain modelling.
    Faure G; Bornot A; de Brevern AG
    Biochimie; 2008 Apr; 90(4):626-39. PubMed ID: 18086572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inter-residue interaction is a determinant of protein folding kinetics.
    Huang S; Huang JT
    J Theor Biol; 2013 Jan; 317():224-8. PubMed ID: 23063779
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of ionized protein residues on the nucleation pathway of protein folding.
    Djikaev YS; Ruckenstein E
    J Chem Phys; 2008 Jan; 128(2):025103. PubMed ID: 18205478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. How the folding rates of two- and multistate proteins depend on the amino acid properties.
    Huang JT; Huang W; Huang SR; Li X
    Proteins; 2014 Oct; 82(10):2375-82. PubMed ID: 24810705
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Entropy capacity determines protein folding.
    Galzitskaya OV; Garbuzynskiy SO
    Proteins; 2006 Apr; 63(1):144-54. PubMed ID: 16400647
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computational Approaches to Identification of Aggregation Sites and the Mechanism of Amyloid Growth.
    Dovidchenko NV; Galzitskaya OV
    Adv Exp Med Biol; 2015; 855():213-39. PubMed ID: 26149932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Residues participating in the protein folding nucleus do not exhibit preferential evolutionary conservation.
    Larson SM; Ruczinski I; Davidson AR; Baker D; Plaxco KW
    J Mol Biol; 2002 Feb; 316(2):225-33. PubMed ID: 11851333
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Zyggregator method for predicting protein aggregation propensities.
    Tartaglia GG; Vendruscolo M
    Chem Soc Rev; 2008 Jul; 37(7):1395-401. PubMed ID: 18568165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Statistical analysis of unstructured amino acid residues in protein structures.
    Lobanov MY; Garbuzynskiy SO; Galzitskaya OV
    Biochemistry (Mosc); 2010 Feb; 75(2):192-200. PubMed ID: 20367606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of protein folding class using global description of amino acid sequence.
    Dubchak I; Muchnik I; Holbrook SR; Kim SH
    Proc Natl Acad Sci U S A; 1995 Sep; 92(19):8700-4. PubMed ID: 7568000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Swfoldrate: predicting protein folding rates from amino acid sequence with sliding window method.
    Cheng X; Xiao X; Wu ZC; Wang P; Lin WZ
    Proteins; 2013 Jan; 81(1):140-8. PubMed ID: 22933332
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein design with L- and D-alpha-amino acid structures as the alphabet.
    Durani S
    Acc Chem Res; 2008 Oct; 41(10):1301-8. PubMed ID: 18642934
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMR characterization of hydrophobic collapses in amyloidogenic unfolded states and their implications for amyloid formation.
    Lim KH; Nagchowdhuri P; Rathinavelan T; Im W
    Biochem Biophys Res Commun; 2010 Jun; 396(4):800-5. PubMed ID: 20438713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.