These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19268284)

  • 1. Influence of Mg2+ on the binding modes of HIV-1 integrase with thiazolothiazepine inhibitor studied by molecular simulation.
    Wang L
    Comput Biol Med; 2009 Apr; 39(4):355-60. PubMed ID: 19268284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active site binding modes of curcumin in HIV-1 protease and integrase.
    Vajragupta O; Boonchoong P; Morris GM; Olson AJ
    Bioorg Med Chem Lett; 2005 Jul; 15(14):3364-8. PubMed ID: 15950462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of HIV-1 integrase/viral DNA interactions in the catalytic domain by fast molecular docking.
    Adesokan AA; Roberts VA; Lee KW; Lins RD; Briggs JM
    J Med Chem; 2004 Feb; 47(4):821-8. PubMed ID: 14761184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Docking-based 3D-QSAR study of HIV-1 integrase inhibitors.
    Gupta P; Roy N; Garg P
    Eur J Med Chem; 2009 Nov; 44(11):4276-87. PubMed ID: 19647906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on the molecular mechanism of inhibiting HIV-1 integrase by EBR28 peptide via molecular modeling approach.
    Hu JP; Gong XQ; Su JG; Chen WZ; Wang CX
    Biophys Chem; 2008 Feb; 132(2-3):69-80. PubMed ID: 18037557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring binding mode for styrylquinoline HIV-1 integrase inhibitors using comparative molecular field analysis and docking studies.
    Ma XH; Zhang XY; Tan JJ; Chen WZ; Wang CX
    Acta Pharmacol Sin; 2004 Jul; 25(7):950-8. PubMed ID: 15210071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tn5 transposase as a useful platform to simulate HIV-1 integrase inhibitor binding mode.
    Barreca ML; Ortuso F; Iraci N; De Luca L; Alcaro S; Chimirri A
    Biochem Biophys Res Commun; 2007 Nov; 363(3):554-60. PubMed ID: 17889829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active site binding modes of dimeric phloroglucinols for HIV-1 reverse transcriptase, protease and integrase.
    Gupta P; Kumar R; Garg P; Singh IP
    Bioorg Med Chem Lett; 2010 Aug; 20(15):4427-31. PubMed ID: 20594846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on the inhibitory mechanism and binding mode of the hydroxycoumarin compound NSC158393 to HIV-1 integrase by molecular modeling.
    Liu M; Cong XJ; Li P; Tan JJ; Chen WZ; Wang CX
    Biopolymers; 2009 Sep; 91(9):700-9. PubMed ID: 19382173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and theoretical studies of [6-bromo-1-(4-fluorophenylmethyl)-4(1H)-quinolinon-3-yl)]-4-hydroxy-2-oxo-3-butenoïc acid as HIV-1 integrase inhibitor.
    Vandurm P; Cauvin C; Guiguen A; Georges B; Le Van K; Martinelli V; Cardona C; Mbemba G; Mouscadet JF; Hevesi L; Van Lint C; Wouters J
    Bioorg Med Chem Lett; 2009 Aug; 19(16):4806-9. PubMed ID: 19556126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of binding energy using BLYP/MM for the HIV-1 integrase complexed with the S-1360 and two analogues.
    Alves CN; Martí S; Castillo R; Andrés J; Moliner V; Tuñón I; Silla E
    Bioorg Med Chem; 2007 Jun; 15(11):3818-24. PubMed ID: 17420131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constructing HIV-1 integrase tetramer and exploring influences of metal ions on forming integrase-DNA complex.
    Wang LD; Liu CL; Chen WZ; Wang CX
    Biochem Biophys Res Commun; 2005 Nov; 337(1):313-9. PubMed ID: 16188234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding mode prediction of strand transfer HIV-1 integrase inhibitors using Tn5 transposase as a plausible surrogate model for HIV-1 integrase.
    Barreca ML; De Luca L; Iraci N; Chimirri A
    J Med Chem; 2006 Jun; 49(13):3994-7. PubMed ID: 16789757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A platform for designing HIV integrase inhibitors. Part 2: a two-metal binding model as a potential mechanism of HIV integrase inhibitors.
    Kawasuji T; Fuji M; Yoshinaga T; Sato A; Fujiwara T; Kiyama R
    Bioorg Med Chem; 2006 Dec; 14(24):8420-9. PubMed ID: 17005407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A docking study of L-chicoric acid with HIV-1 integrase.
    Healy EF; Sanders J; King PJ; Robinson WE
    J Mol Graph Model; 2009 Jan; 27(5):584-9. PubMed ID: 19004651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and dynamical properties of a full-length HIV-1 integrase: molecular dynamics simulations.
    Wijitkosoom A; Tonmunphean S; Truong TN; Hannongbua S
    J Biomol Struct Dyn; 2006 Jun; 23(6):613-24. PubMed ID: 16615807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight into the inhibitory mechanism and binding mode between D77 and HIV-1 integrase by molecular modeling methods.
    Li P; Tan JJ; Liu M; Zhang XY; Chen WZ; Wang CX
    J Biomol Struct Dyn; 2011 Oct; 29(2):311-23. PubMed ID: 21875151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The terminal (catalytic) adenosine of the HIV LTR controls the kinetics of binding and dissociation of HIV integrase strand transfer inhibitors.
    Langley DR; Samanta HK; Lin Z; Walker MA; Krystal MR; Dicker IB
    Biochemistry; 2008 Dec; 47(51):13481-8. PubMed ID: 18991395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling study on the allosteric inhibition mechanism of HIV-1 integrase by LEDGF/p75 binding site inhibitors.
    Xue W; Liu H; Yao X
    PLoS One; 2014; 9(3):e90799. PubMed ID: 24599328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New chloro,fluorobenzylindole derivatives as integrase strand-transfer inhibitors (INSTIs) and their mode of action.
    Ferro S; De Luca L; Barreca ML; De Grazia S; Christ F; Debyser Z; Chimirri A
    Bioorg Med Chem; 2010 Aug; 18(15):5510-8. PubMed ID: 20630765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.