BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 19268338)

  • 21. Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, alpha,beta-unsaturated chemicals.
    Schultz TW; Netzeva TI; Roberts DW; Cronin MT
    Chem Res Toxicol; 2005 Feb; 18(2):330-41. PubMed ID: 15720140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Linear versus nonlinear QSAR modeling of the toxicity of phenol derivatives to Tetrahymena pyriformis.
    Devillers J
    SAR QSAR Environ Res; 2004 Aug; 15(4):237-49. PubMed ID: 15370415
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring predictive QSAR models for hepatocyte toxicity of phenols using QTMS descriptors.
    Roy K; Popelier PL
    Bioorg Med Chem Lett; 2008 Apr; 18(8):2604-9. PubMed ID: 18378448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromatographic retention-activity relationships for prediction of the toxicity pH-dependence of phenols.
    Bermúdez-Saldaña JM; Escuder-Gilabert L; Medina-Hernández MJ; Villanueva-Camañas RM; Sagrado S
    Chemosphere; 2007 Aug; 69(1):108-17. PubMed ID: 17553545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new approach to QSAR modelling of acute toxicity.
    Lagunin AA; Zakharov AV; Filimonov DA; Poroikov VV
    SAR QSAR Environ Res; 2007; 18(3-4):285-98. PubMed ID: 17514571
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative structure-activity analyses of nitrobenzene toxicity to Tetrahymena pyriformis.
    Cronin MT; Gregory BW; Schultz TW
    Chem Res Toxicol; 1998 Aug; 11(8):902-8. PubMed ID: 9705752
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism-based quantitative structure-phytotoxicity relationships comparative inhibition of substituted phenols on root elongation of Cucumis sativus.
    Wang X; Wang Y; Chunsheng Y; Wang L; Han S
    Arch Environ Contam Toxicol; 2002 Jan; 42(1):29-35. PubMed ID: 11706365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toxicity of organic pollutants to seven aquatic organisms: effect of polarity and ionization.
    Qin WC; Su LM; Zhang XJ; Qin HW; Wen Y; Guo Z; Sun FT; Sheng LX; Zhao YH; Abraham MH
    SAR QSAR Environ Res; 2010 Jul; 21(5-6):389-401. PubMed ID: 20818578
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model-based QSAR for ionizable compounds: toxicity of phenols against Tetrahymena pyriformis.
    Pirselová K; Baláz S; Schultz TW
    Arch Environ Contam Toxicol; 1996 Feb; 30(2):170-7. PubMed ID: 8593079
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of the ciliated protozoan Tetrahymena pyriformis for the assessment of toxicity and quantitative structure--activity relationships of xenobiotics: comparison with the Microtox test.
    Bogaerts P; Bohatier J; Bonnemoy F
    Ecotoxicol Environ Saf; 2001 Jul; 49(3):293-301. PubMed ID: 11440483
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative structure-activity relationships for the inhibition toxicity to root elongation of Cucumis sativus of selected phenols and interspecies correlation with Tetrahymena pyriformis.
    Wang X; Sun C; Wang Y; Wang L
    Chemosphere; 2002 Jan; 46(2):153-61. PubMed ID: 11827272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. QSAR analyses of the toxicity of aliphatic carboxylic acids and salts to Tetrahymena pyriformis.
    Seward JR; Schultz TW
    SAR QSAR Environ Res; 1999 Dec; 10(6):557-67. PubMed ID: 10674293
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection.
    Tetko IV; Sushko I; Pandey AK; Zhu H; Tropsha A; Papa E; Oberg T; Todeschini R; Fourches D; Varnek A
    J Chem Inf Model; 2008 Sep; 48(9):1733-46. PubMed ID: 18729318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel QSAR approach for estimating toxicity of phenols.
    Schultz TW; Bearden AP; Jaworska JS
    SAR QSAR Environ Res; 1996; 5(2):99-112. PubMed ID: 8751817
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human and rat liver phenol sulfotransferase: structure-activity relationships for phenolic substrates.
    Campbell NR; Van Loon JA; Sundaram RS; Ames MM; Hansch C; Weinshilboum R
    Mol Pharmacol; 1987 Dec; 32(6):813-9. PubMed ID: 3480422
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of quantitative structure activity relationships in toxicity prediction of complex mixtures.
    Yu HX; Lin ZF; Feng JF; Xu TL; Wang LS
    Acta Pharmacol Sin; 2001 Jan; 22(1):45-9. PubMed ID: 11730561
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactivity and aquatic toxicity of aromatic compounds transformable to quinone-type Michael acceptors.
    Bajot F; Cronin MT; Roberts DW; Schultz TW
    SAR QSAR Environ Res; 2011 Mar; 22(1-2):51-65. PubMed ID: 21391141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative study of four QSAR models of aromatic compounds to aquatic organisms.
    Yu RL; Hu GR; Zhao YH
    J Environ Sci (China); 2002 Oct; 14(4):552-7. PubMed ID: 12491732
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Determination of the chromatographic hydrophobicity index for ionisable solutes.
    Fuguet E; Ràfols C; Bosch E; Rosés M
    J Chromatogr A; 2007 Nov; 1173(1-2):110-9. PubMed ID: 17976634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrophilicity as a possible descriptor for toxicity prediction.
    Roy DR; Parthasarathi R; Maiti B; Subramanian V; Chattaraj PK
    Bioorg Med Chem; 2005 May; 13(10):3405-12. PubMed ID: 15848752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.