BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 19268338)

  • 61. Thermodynamic descriptors derived from density functional theory calculations in prediction of aquatic toxicity.
    Smiesko M; Benfenati E
    J Chem Inf Model; 2005; 45(2):379-85. PubMed ID: 15807503
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A novel approach to predict a toxicological property of aromatic compounds in the Tetrahymena pyriformis.
    González MP; Díaz HG; Cabrera MA; Ruiz RM
    Bioorg Med Chem; 2004 Feb; 12(4):735-44. PubMed ID: 14759733
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Computational modeling of substituent effects on phenol toxicity.
    Wright JS; Shadnia H
    Chem Res Toxicol; 2008 Jul; 21(7):1426-31. PubMed ID: 18512964
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Prediction of aquatic toxicity: use of optimization of correlation weights of local graph invariants.
    Toropov AA; Schultz TW
    J Chem Inf Comput Sci; 2003; 43(2):560-7. PubMed ID: 12653522
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Assessment and modeling of the novel toxicity data set of phenols to Chlorella vulgaris.
    Ertürk MD; Saçan MT
    Ecotoxicol Environ Saf; 2013 Apr; 90():61-8. PubMed ID: 23332417
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In silico prediction of toxicity of phenols to Tetrahymena pyriformis by using genetic algorithm and decision tree-based modeling approach.
    Abbasitabar F; Zare-Shahabadi V
    Chemosphere; 2017 Apr; 172():249-259. PubMed ID: 28081509
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Quantitative structure--toxicity relationships using TOPS-MODE. 1. Nitrobenzene toxicity to Tetrahymena pyriformis.
    Estrada E; Uriarte E
    SAR QSAR Environ Res; 2001; 12(3):309-24. PubMed ID: 11696927
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: polar narcotic organics.
    McCarty LS; Mackay D; Smith AD; Ozburn GW; Dixon DG
    Ecotoxicol Environ Saf; 1993 Jun; 25(3):253-70. PubMed ID: 7691520
    [TBL] [Abstract][Full Text] [Related]  

  • 69. QSARs for the aquatic toxicity of aromatic aldehydes from Tetrahymena data.
    Netzeva TI; Schultz TW
    Chemosphere; 2005 Dec; 61(11):1632-43. PubMed ID: 15950260
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Understanding the toxicity of phenols: using quantitative structure-activity relationship and enthalpy changes to discriminate between possible mechanisms.
    Shadnia H; Wright JS
    Chem Res Toxicol; 2008 Jun; 21(6):1197-204. PubMed ID: 18500785
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modeling the toxicity of chemicals to Tetrahymena pyriformis using heuristic multilinear regression and heuristic back-propagation neural networks.
    Kahn I; Sild S; Maran U
    J Chem Inf Model; 2007; 47(6):2271-9. PubMed ID: 17985864
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Comparison between immobilized artificial membrane (IAM) HPLC data and lipophilicity in n-octanol for quinolone antibacterial agents.
    Barbato F; Cirocco V; Grumetto L; Immacolata La Rotonda M
    Eur J Pharm Sci; 2007 Aug; 31(5):288-97. PubMed ID: 17540545
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Quantitative structure-activity relationships (QSARs) using the novel marine algal toxicity data of phenols.
    Ertürk MD; Saçan MT; Novic M; Minovski N
    J Mol Graph Model; 2012 Sep; 38():90-100. PubMed ID: 23085159
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Study on the toxicity of phenolic and phenoxy herbicides using the submitochondrial particle assay.
    Argese E; Bettiol C; Marchetto D; De Vettori S; Zambon A; Miana P; Ghetti PF
    Toxicol In Vitro; 2005 Dec; 19(8):1035-43. PubMed ID: 16023322
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mechanisms of cytotoxicity of 2- or 2,6-di-tert-butylphenols and 2-methoxyphenols in terms of inhibition rate constant and a theoretical parameter.
    Kadoma Y; Ito S; Atsumi T; Fujisawa S
    Chemosphere; 2009 Feb; 74(5):626-32. PubMed ID: 19084262
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Quantitative structure-activity relationships for estrogen receptor binding affinity of phenolic chemicals.
    Hu JY; Aizawa T
    Water Res; 2003 Mar; 37(6):1213-22. PubMed ID: 12598185
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Assessment of baseline toxicity of mono-cyclic aromatic compounds by pseudomonas initial oxygen uptake assay.
    Whang TJ; Wang YT; Wu YP; Wang YS; Tsai MC; Huang DS
    SAR QSAR Environ Res; 2005 Jun; 16(3):247-62. PubMed ID: 15804812
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Bee algorithm and adaptive neuro-fuzzy inference system as tools for QSAR study toxicity of substituted benzenes to Tetrahymena pyriformis.
    Zarei K; Atabati M; Kor K
    Bull Environ Contam Toxicol; 2014 Jun; 92(6):642-9. PubMed ID: 24638918
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Quantitative structure toxicity relationships for phenols in isolated rat hepatocytes.
    Moridani MY; Siraki A; O'Brien PJ
    Chem Biol Interact; 2003 May; 145(2):213-23. PubMed ID: 12686497
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Abiotic sulfhydryl reactivity: a predictor of aquatic toxicity for carbonyl-containing alpha,beta-unsaturated compounds.
    Yarbrough JW; Schultz TW
    Chem Res Toxicol; 2007 Mar; 20(3):558-62. PubMed ID: 17319700
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.