These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 19268381)
1. Influence of water activity and temperature on growth and mycotoxin production by isolates of Pyrenophora tritici-repentis from wheat. Bouras N; Kim YM; Strelkov SE Int J Food Microbiol; 2009 May; 131(2-3):251-5. PubMed ID: 19268381 [TBL] [Abstract][Full Text] [Related]
2. Influence of carbon source on growth and mycotoxin production by isolates of Pyrenophora tritici-repentis from wheat. Bouras N; Strelkov SE Can J Microbiol; 2010 Oct; 56(10):874-84. PubMed ID: 20962911 [TBL] [Abstract][Full Text] [Related]
3. Inoculum sources of the tan spot fungus Pyrenophora tritici-repentis in The Netherlands. Kastelein P; Köhl J; Gerlagh M; Goossen-van de Geijn HM Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):257-67. PubMed ID: 12701430 [TBL] [Abstract][Full Text] [Related]
4. Genetic analysis of resistance to Pyrenophora tritici-repentis races 1 and 5 in tetraploid and hexaploid wheat. Singh PK; Mergoum M; Ali S; Adhikari TB; Hughes GR Phytopathology; 2008 Jun; 98(6):702-8. PubMed ID: 18944295 [TBL] [Abstract][Full Text] [Related]
5. Water, temperature and gas composition interactions affect growth and ochratoxin A production by isolates of Penicillium verrucosum on wheat grain. Cairns-Fuller V; Aldred D; Magan N J Appl Microbiol; 2005; 99(5):1215-21. PubMed ID: 16238752 [TBL] [Abstract][Full Text] [Related]
6. Emergence of tan spot disease caused by toxigenic Pyrenophora tritici-repentis in Australia is not associated with increased deployment of toxin-sensitive cultivars. Oliver RP; Lord M; Rybak K; Faris JD; Solomon PS Phytopathology; 2008 May; 98(5):488-91. PubMed ID: 18943215 [TBL] [Abstract][Full Text] [Related]
7. Cytochrome b gene sequence and structure of Pyrenophora teres and P. tritici-repentis and implications for QoI resistance. Sierotzki H; Frey R; Wullschleger J; Palermo S; Karlin S; Godwin J; Gisi U Pest Manag Sci; 2007 Mar; 63(3):225-33. PubMed ID: 17212344 [TBL] [Abstract][Full Text] [Related]
8. A proteomic evaluation of Pyrenophora tritici-repentis, causal agent of tan spot of wheat, reveals major differences between virulent and avirulent isolates. Cao T; Kim YM; Kav NN; Strelkov SE Proteomics; 2009 Mar; 9(5):1177-96. PubMed ID: 19206107 [TBL] [Abstract][Full Text] [Related]
9. Homologs of ToxB, a host-selective toxin gene from Pyrenophora tritici-repentis, are present in the genome of sister-species Pyrenophora bromi and other members of the Ascomycota. Andrie RM; Schoch CL; Hedges R; Spatafora JW; Ciuffetti LM Fungal Genet Biol; 2008 Mar; 45(3):363-77. PubMed ID: 18226934 [TBL] [Abstract][Full Text] [Related]
10. Comparison of environmental profiles for growth and deoxynivalenol production by Fusarium culmorum and F. graminearum on wheat grain. Hope R; Aldred D; Magan N Lett Appl Microbiol; 2005; 40(4):295-300. PubMed ID: 15752221 [TBL] [Abstract][Full Text] [Related]
11. Genetic diversity of the mating type and toxin production genes in Pyrenophora tritici-repentis. Lepoint P; Renard ME; Legrève A; Duveiller E; Maraite H Phytopathology; 2010 May; 100(5):474-83. PubMed ID: 20373969 [TBL] [Abstract][Full Text] [Related]
12. Proteomics of the wheat tan spot pathogen Pyrenophora tritici-repentis. Moffat CS; Stoll T; Moolhuijzen P BMC Res Notes; 2018 Nov; 11(1):846. PubMed ID: 30497514 [TBL] [Abstract][Full Text] [Related]
13. Tsn1-mediated host responses to ToxA from Pyrenophora tritici-repentis. Adhikari TB; Bai J; Meinhardt SW; Gurung S; Myrfield M; Patel J; Ali S; Gudmestad NC; Rasmussen JB Mol Plant Microbe Interact; 2009 Sep; 22(9):1056-68. PubMed ID: 19656041 [TBL] [Abstract][Full Text] [Related]
14. Distribution and Pathogenic Characterization of Pyrenophora tritici-repentis and Stagonospora nodorum in Ohio. Engle JS; Madden LV; Lipps PE Phytopathology; 2006 Dec; 96(12):1355-62. PubMed ID: 18943668 [TBL] [Abstract][Full Text] [Related]
15. First Report of Tan Spot of Wheat Caused by Pyrenophora tritici-repentis in the Pacific Northwest. Peever TL; Murray TD Plant Dis; 2003 Feb; 87(2):203. PubMed ID: 30812939 [TBL] [Abstract][Full Text] [Related]
16. Temperature and water activity effects on growth and temporal deoxynivalenol production by two Argentinean strains of Fusarium graminearum on irradiated wheat grain. Ramirez ML; Chulze S; Magan N Int J Food Microbiol; 2006 Feb; 106(3):291-6. PubMed ID: 16236377 [TBL] [Abstract][Full Text] [Related]
17. Quantitative variation in effector activity of ToxA isoforms from Stagonospora nodorum and Pyrenophora tritici-repentis. Tan KC; Ferguson-Hunt M; Rybak K; Waters OD; Stanley WA; Bond CS; Stukenbrock EH; Friesen TL; Faris JD; McDonald BA; Oliver RP Mol Plant Microbe Interact; 2012 Apr; 25(4):515-22. PubMed ID: 22250581 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the multiple-copy host-selective toxin gene, ToxB, in pathogenic and nonpathogenic isolates of Pyrenophora tritici-repentis. Martinez JP; Oesch NW; Ciuffetti LM Mol Plant Microbe Interact; 2004 May; 17(5):467-74. PubMed ID: 15141950 [TBL] [Abstract][Full Text] [Related]
19. A Combination of Phenotypic and Genotypic Characterization Strengthens Pyrenophora tritici-repentis Race Identification. Andrie RM; Pandelova I; Ciuffetti LM Phytopathology; 2007 Jun; 97(6):694-701. PubMed ID: 18943600 [TBL] [Abstract][Full Text] [Related]
20. An exo-1,3-β-glucanase GLU1 contributes to the virulence of the wheat tan spot pathogen Pyrenophora tritici-repentis. Fu H; Feng J; Aboukhaddour R; Cao T; Hwang SF; Strelkov SE Fungal Biol; 2013 Oct; 117(10):673-81. PubMed ID: 24119405 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]