These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 19268703)

  • 1. Protein carbonylation: 2,4-dinitrophenylhydrazine reacts with both aldehydes/ketones and sulfenic acids.
    Dalle-Donne I; Carini M; Orioli M; Vistoli G; Regazzoni L; Colombo G; Rossi R; Milzani A; Aldini G
    Free Radic Biol Med; 2009 May; 46(10):1411-9. PubMed ID: 19268703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Qualitative and quantitative evaluation of derivatization reagents for different types of protein-bound carbonyl groups.
    Bollineni RC; Fedorova M; Hoffmann R
    Analyst; 2013 Sep; 138(17):5081-8. PubMed ID: 23833766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical nature of stochastic generation of protein-based carbonyls: metal-catalyzed oxidation versus modification by products of lipid oxidation.
    Yuan Q; Zhu X; Sayre LM
    Chem Res Toxicol; 2007 Jan; 20(1):129-39. PubMed ID: 17226935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivatization of carbonyl compounds with 2,4-dinitrophenylhydrazine and their subsequent determination by high-performance liquid chromatography.
    Uchiyama S; Inaba Y; Kunugita N
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 May; 879(17-18):1282-9. PubMed ID: 20970389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of carbonylated peptides by tandem mass spectrometry using a precursor ion-like scan in negative ion mode.
    Bollineni RCh; Fedorova M; Hoffmann R
    J Proteomics; 2011 Oct; 74(11):2351-9. PubMed ID: 21669303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enrichment of carbonylated peptides using Girard P reagent and strong cation exchange chromatography.
    Mirzaei H; Regnier F
    Anal Chem; 2006 Feb; 78(3):770-8. PubMed ID: 16448050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo.
    Takanishi CL; Ma LH; Wood MJ
    Biochemistry; 2007 Dec; 46(50):14725-32. PubMed ID: 18020457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of linear aliphatic aldehydes in heavy metal containing waters by high-performance liquid chromatography using 2,4-dinitrophenylhydrazine derivatization.
    Lin YL; Wang PY; Hsieh LL; Ku KH; Yeh YT; Wu CH
    J Chromatogr A; 2009 Sep; 1216(36):6377-81. PubMed ID: 19643424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic approaches to identifying carbonylated proteins in brain tissue.
    Linares M; Marín-Garcíía P; Méndez D; Puyet A; Diez A; Bautista JM
    J Proteome Res; 2011 Apr; 10(4):1719-27. PubMed ID: 21235272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 13C NMR analysis of the cysteine-sulfenic acid redox center of enterococcal NADH peroxidase.
    Crane EJ; Vervoort J; Claiborne A
    Biochemistry; 1997 Jul; 36(28):8611-8. PubMed ID: 9214307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein and cell wall polysaccharide carbonyl determination by a neutral pH 2,4-dinitrophenylhydrazine-based photometric assay.
    Georgiou CD; Zisimopoulos D; Argyropoulou V; Kalaitzopoulou E; Salachas G; Grune T
    Redox Biol; 2018 Jul; 17():128-142. PubMed ID: 29684819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Headspace in-drop derivatization of carbonyl compounds for their analysis by high-performance liquid chromatography-diode array detection.
    Pillai AK; Gautam K; Jain A; Verma KK
    Anal Chim Acta; 2009 Jan; 632(2):208-15. PubMed ID: 19110095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of media and derivatization chemistry for six aldehydes in a passive sampler.
    Liu LJ; Dills RL; Paulsen M; Kalman DA
    Environ Sci Technol; 2001 Jun; 35(11):2301-8. PubMed ID: 11414036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemoglobin glutathionylation can occur through cysteine sulfenic acid intermediate: electrospray ionization LTQ-Orbitrap hybrid mass spectrometry studies.
    Regazzoni L; Panusa A; Yeum KJ; Carini M; Aldini G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(28):3456-61. PubMed ID: 19493711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A periplasmic reducing system protects single cysteine residues from oxidation.
    Depuydt M; Leonard SE; Vertommen D; Denoncin K; Morsomme P; Wahni K; Messens J; Carroll KS; Collet JF
    Science; 2009 Nov; 326(5956):1109-11. PubMed ID: 19965429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein carbonylation: avoiding pitfalls in the 2,4-dinitrophenylhydrazine assay.
    Luo S; Wehr NB
    Redox Rep; 2009; 14(4):159-66. PubMed ID: 19695123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and reactions of sulfenic acid in human serum albumin.
    Alvarez B; Carballal S; Turell L; Radi R
    Methods Enzymol; 2010; 473():117-36. PubMed ID: 20513474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cysteine sulfenic acid as an intermediate in disulfide bond formation and nonenzymatic protein folding.
    Rehder DS; Borges CR
    Biochemistry; 2010 Sep; 49(35):7748-55. PubMed ID: 20712299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive sulfur species: kinetics and mechanisms of the oxidation of cysteine by hypohalous acid to give cysteine sulfenic acid.
    Nagy P; Ashby MT
    J Am Chem Soc; 2007 Nov; 129(45):14082-91. PubMed ID: 17939659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of protein decarbonylation.
    Wong CM; Marcocci L; Das D; Wang X; Luo H; Zungu-Edmondson M; Suzuki YJ
    Free Radic Biol Med; 2013 Dec; 65():1126-1133. PubMed ID: 24044890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.