These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
975 related articles for article (PubMed ID: 19268966)
1. Effect of organic matter and iron oxides on quaternary herbicide sorption-desorption in vineyard-devoted soils. Pateiro-Moure M; Pérez-Novo C; Arias-Estévez M; Rial-Otero R; Simal-Gándara J J Colloid Interface Sci; 2009 May; 333(2):431-8. PubMed ID: 19268966 [TBL] [Abstract][Full Text] [Related]
2. Influence of copper on the adsorption and desorption of paraquat, diquat, and difenzoquat in vineyard acid soils. Pateiro-Moure M; Pérez-Novo C; Arias-Estévez M; López-Periago E; Martínez-Carballo E; Simal-Gandara J J Agric Food Chem; 2007 Jul; 55(15):6219-26. PubMed ID: 17608503 [TBL] [Abstract][Full Text] [Related]
3. Competitive and non-competitive adsorption/desorption of paraquat, diquat and difenzoquat in vineyard-devoted soils. Pateiro-Moure M; Arias-Estévez M; Simal-Gándara J J Hazard Mater; 2010 Jun; 178(1-3):194-201. PubMed ID: 20133062 [TBL] [Abstract][Full Text] [Related]
4. Quaternary herbicides retention by the amendment of acid soils with a bentonite-based waste from wineries. Pateiro-Moure M; Nóvoa-Muñoz JC; Arias-Estévez M; López-Periago E; Martínez-Carballo E; Simal-Gándara J J Hazard Mater; 2009 May; 164(2-3):769-75. PubMed ID: 18829159 [TBL] [Abstract][Full Text] [Related]
5. Sorption of paraquat on clay components in Taiwan's oxisol. Hseu ZY; Jien SH; Cheng SF J Environ Sci Health B; 2003 Jul; 38(4):441-9. PubMed ID: 12856926 [TBL] [Abstract][Full Text] [Related]
6. Sorption and desorption of flumioxazin to soil, clay minerals and ion-exchange resin. Ferrell JA; Vencill WK; Xia K; Grey TL Pest Manag Sci; 2005 Jan; 61(1):40-6. PubMed ID: 15593072 [TBL] [Abstract][Full Text] [Related]
7. Effect of soil type on adsorption-desorption, mobility, and activity of the herbicide norflurazon. Morillo E; Undabeytia T; Cabrera A; Villaverde J; Maqueda C J Agric Food Chem; 2004 Feb; 52(4):884-90. PubMed ID: 14969546 [TBL] [Abstract][Full Text] [Related]
8. Studies on the sorption and desorption characteristics of Zn(II) on the surface soils of nuclear power plant sites in India using a radiotracer technique. Dahiya S; Shanwal AV; Hegde AG Chemosphere; 2005 Sep; 60(9):1253-61. PubMed ID: 16018896 [TBL] [Abstract][Full Text] [Related]
9. Occurrence and downslope mobilization of quaternary herbicide residues in vineyard-devoted soils. Pateiro-Moure M; Arias-Estévez M; López-Periago E; Martínez-Carballo E; Simal-Gándara J Bull Environ Contam Toxicol; 2008 May; 80(5):407-11. PubMed ID: 18389162 [TBL] [Abstract][Full Text] [Related]
10. Effects of SOM, surfactant and pH on the sorption-desorption and mobility of prometryne in soils. Cao J; Guo H; Zhu HM; Jiang L; Yang H Chemosphere; 2008 Feb; 70(11):2127-34. PubMed ID: 17923148 [TBL] [Abstract][Full Text] [Related]
11. The ratio of clay content to total organic carbon content is a useful parameter to predict adsorption of the herbicide butachlor in soils. Liu Z; He Y; Xu J; Huang P; Jilani G Environ Pollut; 2008 Mar; 152(1):163-71. PubMed ID: 17601643 [TBL] [Abstract][Full Text] [Related]
12. Adsorption-desorption behaviour of flufenacet in five different soils of India. Gajbhiye VT; Gupta S Pest Manag Sci; 2001 Jul; 57(7):633-9. PubMed ID: 11464796 [TBL] [Abstract][Full Text] [Related]
13. Adsorption and degradation of four acidic herbicides in soils from southern Spain. Villaverde J; Kah M; Brown CD Pest Manag Sci; 2008 Jul; 64(7):703-10. PubMed ID: 18283714 [TBL] [Abstract][Full Text] [Related]
14. Adsorption of chloroacetanilide herbicides on soil (I). Structural influence of chloroacetanilide herbicide for their adsorption on soils and its components. Liu WP; Liu HJ; Zheng W; Lu JH J Environ Sci (China); 2001 Jan; 13(1):37-45. PubMed ID: 11590717 [TBL] [Abstract][Full Text] [Related]
15. Adsorption studies of the herbicide simazine in agricultural soils of the Aconcagua valley, central Chile. Flores C; Morgante V; González M; Navia R; Seeger M Chemosphere; 2009 Mar; 74(11):1544-9. PubMed ID: 19101008 [TBL] [Abstract][Full Text] [Related]
16. Sorption characteristics of atrazine and imazethapyr in soils of new zealand: importance of independently determined sorption data. Ahmad R; Rahman A J Agric Food Chem; 2009 Nov; 57(22):10866-75. PubMed ID: 19874020 [TBL] [Abstract][Full Text] [Related]
17. Adsorption and desorption of iodine by various Chinese soils: I. Iodate. Dai JL; Zhang M; Zhu YG Environ Int; 2004 Jun; 30(4):525-30. PubMed ID: 15031012 [TBL] [Abstract][Full Text] [Related]
18. Adsorption and desorption of triasulfuron by soil. Pusino A; Fiori MG; Braschi I; Gessa C J Agric Food Chem; 2003 Aug; 51(18):5350-4. PubMed ID: 12926882 [TBL] [Abstract][Full Text] [Related]
19. Atrazine sorption on surface soils: time-dependent phase distribution and apparent desorption hysteresis. Lesan HM; Bhandari A Water Res; 2003 Apr; 37(7):1644-54. PubMed ID: 12600393 [TBL] [Abstract][Full Text] [Related]
20. The behavior of clomazone in the soil environment. Gunasekara AS; dela Cruz ID; Curtis MJ; Claassen VP; Tjeerdema RS Pest Manag Sci; 2009 Jun; 65(6):711-6. PubMed ID: 19319928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]