These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 19269313)

  • 1. Molecular mechanisms in response to phosphate starvation in rice.
    Panigrahy M; Rao DN; Sarla N
    Biotechnol Adv; 2009; 27(4):389-97. PubMed ID: 19269313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches.
    Hirel B; Le Gouis J; Ney B; Gallais A
    J Exp Bot; 2007; 58(9):2369-87. PubMed ID: 17556767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana.
    Zhao L; Liu F; Xu W; Di C; Zhou S; Xue Y; Yu J; Su Z
    Plant Biotechnol J; 2009 Aug; 7(6):550-61. PubMed ID: 19508276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signaling components involved in plant responses to phosphate starvation.
    Yuan H; Liu D
    J Integr Plant Biol; 2008 Jul; 50(7):849-59. PubMed ID: 18713395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis.
    Wu P; Shou H; Xu G; Lian X
    Curr Opin Plant Biol; 2013 May; 16(2):205-12. PubMed ID: 23566853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation and quantitative trait loci analyses of total chlorophyll content and photosynthetic rate of rice (Oryza sativa) under water stress and well-watered conditions.
    Hu SP; Zhou Y; Zhang L; Zhu XD; Li L; Luo LJ; Liu GL; Zhou QM
    J Integr Plant Biol; 2009 Sep; 51(9):879-88. PubMed ID: 19723247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of OsSPX1 in phosphate homeostasis in rice.
    Wang C; Ying S; Huang H; Li K; Wu P; Shou H
    Plant J; 2009 Mar; 57(5):895-904. PubMed ID: 19000161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Over-expression of the rice LRK1 gene improves quantitative yield components.
    Zha X; Luo X; Qian X; He G; Yang M; Li Y; Yang J
    Plant Biotechnol J; 2009 Sep; 7(7):611-20. PubMed ID: 19619185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of OsSPX1 and OsSPX3 on expression of OsSPX domain genes and Pi-starvation signaling in rice.
    Wang Z; Hu H; Huang H; Duan K; Wu Z; Wu P
    J Integr Plant Biol; 2009 Jul; 51(7):663-74. PubMed ID: 19566645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic analysis of agricultural traits in rice related to phosphorus efficiency.
    Guo ZH; Ding P; He LY; Xu CG
    Yi Chuan Xue Bao; 2006 Jul; 33(7):634-41. PubMed ID: 16875321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular regulators of phosphate homeostasis in plants.
    Lin WY; Lin SI; Chiou TJ
    J Exp Bot; 2009; 60(5):1427-38. PubMed ID: 19168668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative sequence analyses of the major quantitative trait locus phosphorus uptake 1 (Pup1) reveal a complex genetic structure.
    Heuer S; Lu X; Chin JH; Tanaka JP; Kanamori H; Matsumoto T; De Leon T; Ulat VJ; Ismail AM; Yano M; Wissuwa M
    Plant Biotechnol J; 2009 Jun; 7(5):456-7. PubMed ID: 19422603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight.
    Weng J; Gu S; Wan X; Gao H; Guo T; Su N; Lei C; Zhang X; Cheng Z; Guo X; Wang J; Jiang L; Zhai H; Wan J
    Cell Res; 2008 Dec; 18(12):1199-209. PubMed ID: 19015668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of quantitative trait loci for rice quality in a population of chromosome segment substitution lines.
    Hao W; Zhu MZ; Gao JP; Sun SY; Lin HX
    J Integr Plant Biol; 2009 May; 51(5):500-12. PubMed ID: 19508361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytokinin represses phosphate-starvation response through increasing of intracellular phosphate level.
    Wang X; Yi K; Tao Y; Wang F; Wu Z; Jiang D; Chen X; Zhu L; Wu P
    Plant Cell Environ; 2006 Oct; 29(10):1924-35. PubMed ID: 16930318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes.
    Kathuria H; Giri J; Nataraja KN; Murata N; Udayakumar M; Tyagi AK
    Plant Biotechnol J; 2009 Aug; 7(6):512-26. PubMed ID: 19490479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering OsBAK1 gene as a molecular tool to improve rice architecture for high yield.
    Li D; Wang L; Wang M; Xu YY; Luo W; Liu YJ; Xu ZH; Li J; Chong K
    Plant Biotechnol J; 2009 Oct; 7(8):791-806. PubMed ID: 19754838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice.
    Li J; Xie Y; Dai A; Liu L; Li Z
    J Genet Genomics; 2009 Mar; 36(3):173-83. PubMed ID: 19302973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation and signaling in phosphorus starvation: what about legumes?
    Valdés-López O; Hernández G
    J Integr Plant Biol; 2008 Oct; 50(10):1213-22. PubMed ID: 19017108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of phosphate transport and signaling in higher plants.
    Wang F; Deng M; Xu J; Zhu X; Mao C
    Semin Cell Dev Biol; 2018 Feb; 74():114-122. PubMed ID: 28648582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.