These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19269334)

  • 1. Enhanced false discovery rate using Gaussian mixture models for thresholding fMRI statistical maps.
    Pendse G; Borsook D; Becerra L
    Neuroimage; 2009 Aug; 47(1):231-61. PubMed ID: 19269334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative evaluation of wavelet-based methods for hypothesis testing of brain activation maps.
    Fadili MJ; Bullmore ET
    Neuroimage; 2004 Nov; 23(3):1112-28. PubMed ID: 15528111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing.
    Wink AM; Roerdink JB
    IEEE Trans Med Imaging; 2004 Mar; 23(3):374-87. PubMed ID: 15027530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Bayesian spatiotemporal model for very large data sets.
    Harrison LM; Green GG
    Neuroimage; 2010 Apr; 50(3):1126-41. PubMed ID: 20026230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian methods for FMRI time-series analysis using a nonstationary model for the noise.
    Oikonomou VP; Tripoliti EE; Fotiadis DI
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):664-74. PubMed ID: 20123577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Likelihood-based hypothesis tests for brain activation detection from MRI data disturbed by colored noise: a simulation study.
    den Dekker AJ; Poot DH; Bos R; Sijbers J
    IEEE Trans Med Imaging; 2009 Feb; 28(2):287-96. PubMed ID: 19188115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling False Discovery Rate in Signal Space for Transformation-Invariant Thresholding of Statistical Maps.
    Li J; Shi Y; Toga AW
    Inf Process Med Imaging; 2015; 24():125-36. PubMed ID: 26213450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced signal detection in neuroimaging by means of regional control of the global false discovery rate.
    Langers DR; Jansen JF; Backes WH
    Neuroimage; 2007 Oct; 38(1):43-56. PubMed ID: 17825583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infinite von Mises-Fisher Mixture Modeling of Whole Brain fMRI Data.
    Røge RE; Madsen KH; Schmidt MN; Mørup M
    Neural Comput; 2017 Oct; 29(10):2712-2741. PubMed ID: 28777721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evaluation of spatial thresholding techniques in fMRI analysis.
    Logan BR; Geliazkova MP; Rowe DB
    Hum Brain Mapp; 2008 Dec; 29(12):1379-89. PubMed ID: 18064589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations.
    Woo CW; Krishnan A; Wager TD
    Neuroimage; 2014 May; 91():412-9. PubMed ID: 24412399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of the resolution of brain parcels on connectome-wide association studies in fMRI.
    Bellec P; Benhajali Y; Carbonell F; Dansereau C; Albouy G; Pelland M; Craddock C; Collignon O; Doyon J; Stip E; Orban P
    Neuroimage; 2015 Dec; 123():212-28. PubMed ID: 26241681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accounting for Non-Gaussian Sources of Spatial Correlation in Parametric Functional Magnetic Resonance Imaging Paradigms II: A Method to Obtain First-Level Analysis Residuals with Uniform and Gaussian Spatial Autocorrelation Function and Independent and Identically Distributed Time-Series.
    Gopinath K; Krishnamurthy V; Lacey S; Sathian K
    Brain Connect; 2018 Feb; 8(1):10-21. PubMed ID: 29161884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying FMRI model violations with Lagrange multiplier tests.
    Cassidy B; Long CJ; Rae C; Solo V
    IEEE Trans Med Imaging; 2012 Jul; 31(7):1481-92. PubMed ID: 22542665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activated region fitting: a robust high-power method for fMRI analysis using parameterized regions of activation.
    Weeda WD; Waldorp LJ; Christoffels I; Huizenga HM
    Hum Brain Mapp; 2009 Aug; 30(8):2595-605. PubMed ID: 19172652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to avoid mismodelling in GLM-based fMRI data analysis: cross-validated Bayesian model selection.
    Soch J; Haynes JD; Allefeld C
    Neuroimage; 2016 Nov; 141():469-489. PubMed ID: 27477536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing methods of analyzing fMRI statistical parametric maps.
    Marchini J; Presanis A
    Neuroimage; 2004 Jul; 22(3):1203-13. PubMed ID: 15219592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empirical null and false discovery rate analysis in neuroimaging.
    Schwartzman A; Dougherty RF; Lee J; Ghahremani D; Taylor JE
    Neuroimage; 2009 Jan; 44(1):71-82. PubMed ID: 18547821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling state-related fMRI activity using change-point theory.
    Lindquist MA; Waugh C; Wager TD
    Neuroimage; 2007 Apr; 35(3):1125-41. PubMed ID: 17360198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating spatial dependence into Bayesian multiple testing of statistical parametric maps in functional neuroimaging.
    Brown DA; Lazar NA; Datta GS; Jang W; McDowell JE
    Neuroimage; 2014 Jan; 84():97-112. PubMed ID: 23981437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.