These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19269412)

  • 1. Determination of light-absorbing layers at inner capillary surface by cw excitation crossed-beam thermal-lens spectrometry.
    Nedosekin DA; Faubel W; Proskurnin MA; Pyell U
    Talanta; 2009 May; 78(3):682-90. PubMed ID: 19269412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of ionene adsorption on quartz surfaces by thermal-lens spectrometry.
    Nedosekin DA; Pirogov AV; Faubel W; Pyell U; Proskurnin MA
    Talanta; 2006 Feb; 68(5):1474-81. PubMed ID: 18970488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of instrumental parameters of a near-field thermal-lens detector for capillary electrophoresis.
    Proskurnin MA; Bendrysheva SN; Ragozina N; Heissler S; Faubel W; Pyell U
    Appl Spectrosc; 2005 Dec; 59(12):1470-9. PubMed ID: 16390585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity enhancement in near-field photothermal-lens detection in capillary electrophoresis using laser-induced online precipitation.
    Nedosekin DA; Faubel W; Proskurnin MA; Pyell U
    Appl Spectrosc; 2011 Nov; 65(11):1275-80. PubMed ID: 22054087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Signal optimisation in cw-laser crossed-beam photothermal spectrometry: influence of the chopping frequency, sample size and flow rate.
    Abbas Ghaleb K; Georges J
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Oct; 61(13-14):2849-55. PubMed ID: 16165023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous-wave-laser versus pulsed-laser excitation for crossed-beam photothermal detection in small volume applications: comparative features.
    Georges J
    Appl Spectrosc; 2005 Sep; 59(9):1103-8. PubMed ID: 18028608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circular dichroism thermal lens microscope for sensitive chiral analysis on microchip.
    Yamauchi M; Mawatari K; Hibara A; Tokeshi M; Kitamori T
    Anal Chem; 2006 Apr; 78(8):2646-50. PubMed ID: 16615775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode-mismatched dual-beam differential thermal lensing with optical scheme design optimized using expert estimation for analytical measurements.
    Proskurnin MA; Volkov ME
    Appl Spectrosc; 2008 Apr; 62(4):439-49. PubMed ID: 18416904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV excitation thermal lens microscope for sensitive and nonlabeled detection of nonfluorescent molecules.
    Hiki S; Mawatari K; Hibara A; Tokeshi M; Kitamori T
    Anal Chem; 2006 Apr; 78(8):2859-63. PubMed ID: 16615803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trace detection and photothermal spectral characterization by a tuneable thermal lens spectrometer with white-light excitation.
    Cabrera H; Akbar J; Korte D; Ramírez-Miquet EE; Marín E; Niemela J; Ebrahimpour Z; Mannatunga K; Franko M
    Talanta; 2018 Jun; 183():158-163. PubMed ID: 29567158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity enhancement of thermal-lens spectrometry using laser-induced precipitation.
    Nedosekin DA; Faubel W; Proskurnin MA; Pyell U
    Anal Sci; 2009 May; 25(5):611-6. PubMed ID: 19430141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model for continuous-wave laser-induced thermal lens spectrometry of optically transparent surface-absorbing solids.
    Nedosekin DA; Proskurnin MA; Kononets MY
    Appl Opt; 2005 Oct; 44(29):6296-306. PubMed ID: 16237948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: experiment.
    Zhang X; Li B
    Rev Sci Instrum; 2015 Feb; 86(2):024902. PubMed ID: 25725872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Very low optical absorptions and analyte concentrations in water measured by Optimized Thermal Lens Spectrometry.
    Cruz RA; Filadelpho MC; Castro MP; Andrade AA; Souza CM; Catunda T
    Talanta; 2011 Aug; 85(2):850-8. PubMed ID: 21726709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-thermal-lens approach to evaluation of multi-pass probe beam configuration in thermal lens spectrometry.
    Cabrera H; Goljat L; Korte D; Marín E; Franko M
    Anal Chim Acta; 2020 Mar; 1100():182-190. PubMed ID: 31987139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portable thermal lens spectrometer with focusing system.
    Mawatari K; Naganuma Y; Shimoide K
    Anal Chem; 2005 Jan; 77(2):687-92. PubMed ID: 15649072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capillary circular dichroism.
    Waldron DE; Marrington R; Grant MC; Hicks MR; Rodger A
    Chirality; 2010; 22 Suppl 1():E136-41. PubMed ID: 21038384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of adsorption of nanogram quantities of iron(II) tris-(1,10-phenanthrolinate) on glasses and silica by thermal lens spectrometry.
    Kononets MY; Proskurnin MA; Bendrysheva SN; Chernysh VV
    Talanta; 2001 Mar; 53(6):1221-7. PubMed ID: 18968216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the mixing efficiency of a chaotic micromixer using thermal lens spectrometry.
    Ghaleb KA; Stephan K; Pittet P; Ferrigno R; Georges J
    Appl Spectrosc; 2006 May; 60(5):564-7. PubMed ID: 16756709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable thermal lens spectrometry utilizing microchannel-assisted thermal lens spectrometry.
    Tamaki E; Hibara A; Tokeshi M; Kitamori T
    Lab Chip; 2005 Feb; 5(2):129-31. PubMed ID: 15672124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.