BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 19269664)

  • 21. Vertically oriented Ti-Pd mixed oxynitride nanotube arrays for enhanced photoelectrochemical water splitting.
    Allam NK; Poncheri AJ; El-Sayed MA
    ACS Nano; 2011 Jun; 5(6):5056-66. PubMed ID: 21568298
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length.
    Paulose M; Shankar K; Yoriya S; Prakasam HE; Varghese OK; Mor GK; LaTempa TJ; Fitzgerald A; Grimes CA
    J Phys Chem B; 2006 Aug; 110(33):16179-84. PubMed ID: 16913737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bisphenol A removal from wastewater using self-organized TIO(2) nanotubular array electrodes.
    Brugnera MF; Rajeshwar K; Cardoso JC; Zanoni MV
    Chemosphere; 2010 Jan; 78(5):569-75. PubMed ID: 20035965
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of the applicability of highly ordered TiO₂ nanotube array for enrichment and determination of polychlorinated biphenyls at trace level in environmental water samples.
    Zhou Q; Huang Y; Xie G
    J Chromatogr A; 2012 May; 1237():24-9. PubMed ID: 22464436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of immobilized nanotubular TiO(2) electrode for photocatalytic hydrogen evolution: reduction of hexavalent chromium (Cr(VI)) in water.
    Yoon J; Shim E; Bae S; Joo H
    J Hazard Mater; 2009 Jan; 161(2-3):1069-74. PubMed ID: 18502574
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance.
    Zhang J; Bang JH; Tang C; Kamat PV
    ACS Nano; 2010 Jan; 4(1):387-95. PubMed ID: 20000756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoelectrocatalytic degradation of 4,4'-dibromobiphenyl in aqueous solution on TiO₂ and doped TiO₂ nanotube arrays.
    Liu H; Liu G; Fan J; Zhou Q; Zhou H; Zhang N; Hou Z; Zhang M; He Z
    Chemosphere; 2011 Jan; 82(1):43-7. PubMed ID: 21040947
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced photoassisted water electrolysis using vertically oriented anodically fabricated Ti-Nb-Zr-O mixed oxide nanotube arrays.
    Allam NK; Alamgir F; El-Sayed MA
    ACS Nano; 2010 Oct; 4(10):5819-26. PubMed ID: 20815374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimising photoelectrocatalytic oxidation of fulvic acid using response surface methodology.
    Fu J; Zhao Y; Wu Q
    J Hazard Mater; 2007 Jun; 144(1-2):499-505. PubMed ID: 17137711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct electrochemistry of horseradish peroxidase on TiO(2) nanotube arrays via seeded-growth synthesis.
    Wu F; Xu J; Tian Y; Hu Z; Wang L; Xian Y; Jin L
    Biosens Bioelectron; 2008 Oct; 24(2):198-203. PubMed ID: 18485691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microwave assisted rapid and complete degradation of atrazine using TiO(2) nanotube photocatalyst suspensions.
    Zhanqi G; Shaogui Y; Na T; Cheng S
    J Hazard Mater; 2007 Jul; 145(3):424-30. PubMed ID: 17188429
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoelectrocatalytic oxidation of glutathione based on porous TiO2-Pt nanowhiskers.
    Chen G; Wang J; Wu C; Li CZ; Jiang H; Wang X
    Langmuir; 2012 Aug; 28(33):12393-9. PubMed ID: 22856668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative study of photocatalytic and photoelectrocatalytic properties of alachlor using different morphology TiO2/Ti photoelectrodes.
    Xin Y; Liu H; Han L; Zhou Y
    J Hazard Mater; 2011 Sep; 192(3):1812-8. PubMed ID: 21802202
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple, stable and picomole level lead sensor fabricated on DNA-based carbon hybridized TiO(2) nanotube arrays.
    Liu M; Zhao G; Tang Y; Yu Z; Lei Y; Li M; Zhang Y; Li D
    Environ Sci Technol; 2010 Jun; 44(11):4241-6. PubMed ID: 20441178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film.
    Zhu A; Luo Y; Tian Y
    Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Visible light photoelectrocatalysis with salicylic acid-modified TiO2 nanotube array electrode for p-nitrophenol degradation.
    Wang X; Zhao H; Quan X; Zhao Y; Chen S
    J Hazard Mater; 2009 Jul; 166(1):547-52. PubMed ID: 19131157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of heat treatment on morphological changes of nano-structured titanium oxide formed by anodic oxidation of titanium in acidic fluoride solution.
    Neupane MP; Park IS; Lee MH; Bae TS; Watari F
    Biomed Mater Eng; 2009; 19(1):77-83. PubMed ID: 19458449
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films.
    Zheng W; Zheng YF; Jin KW; Wang N
    Talanta; 2008 Feb; 74(5):1414-9. PubMed ID: 18371798
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The promotion effect of titania nanoparticles on the direct electrochemistry of lactate dehydrogenase sol-gel modified gold electrode.
    Cheng J; Di J; Hong J; Yao K; Sun Y; Zhuang J; Xu Q; Zheng H; Bi S
    Talanta; 2008 Sep; 76(5):1065-9. PubMed ID: 18761156
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Double-sided anodic titania nanotube arrays: a lopsided growth process.
    Sun L; Zhang S; Sun XW; Wang X; Cai Y
    Langmuir; 2010 Dec; 26(23):18424-9. PubMed ID: 21049918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.