These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 19269664)

  • 41. Nanostructured TiO2 photocatalysts for the determination of organic pollutants.
    Qiu J; Zhang S; Zhao H
    J Hazard Mater; 2012 Apr; 211-212():381-8. PubMed ID: 22133353
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selective formation of ordered arrays of octacalcium phosphate ribbons on TiO(2) nanotube surface by template-assisted electrodeposition.
    Lai Y; Huang Y; Wang H; Huang J; Chen Z; Lin C
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):117-22. PubMed ID: 19900795
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Photoelectrocatalytic activity of highly ordered TiO2 nanotube arrays electrode for azo dye degradation.
    Zhang Z; Yuan Y; Shi G; Fang Y; Liang L; Ding H; Jin L
    Environ Sci Technol; 2007 Sep; 41(17):6259-63. PubMed ID: 17937312
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selective removal of the outer shells of anodic TiO2 nanotubes.
    Li H; Cheng JW; Shu S; Zhang J; Zheng L; Tsang CK; Cheng H; Liang F; Lee ST; Li YY
    Small; 2013 Jan; 9(1):37-44. PubMed ID: 23047586
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Silicon nanotube array/gold electrode for direct electrochemistry of cytochrome c.
    Mu C; Zhao Q; Xu D; Zhuang Q; Shao Y
    J Phys Chem B; 2007 Feb; 111(6):1491-5. PubMed ID: 17253735
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photoelectrocatalytic degradation of chlortetracycline using Ti/TiO2 nanostructured electrodes deposited by means of a Pulsed Laser Deposition process.
    Daghrir R; Drogui P; Ka I; El Khakani MA
    J Hazard Mater; 2012 Jan; 199-200():15-24. PubMed ID: 22104083
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photoeletrocatalytic activity of a Cu2O-loaded self-organized highly oriented TiO2 nanotube array electrode for 4-chlorophenol degradation.
    Hou Y; Li X; Zou X; Quan X; Chen G
    Environ Sci Technol; 2009 Feb; 43(3):858-63. PubMed ID: 19245027
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of nano-topographical features of Ti/TiO(2) electrode surface on cell response and electrochemical stability in artificial saliva.
    Demetrescu I; Pirvu C; Mitran V
    Bioelectrochemistry; 2010 Aug; 79(1):122-9. PubMed ID: 20189888
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation.
    Wang GL; Xu JJ; Chen HY
    Biosens Bioelectron; 2009 Apr; 24(8):2494-8. PubMed ID: 19185483
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation and characterization of fouling-resistant photocatalytic metal membrane embedded with self-organized TiO₂ nano tube.
    Choi WY; Park NS; Wiesner MR; Kim JO
    Water Sci Technol; 2010; 62(4):963-71. PubMed ID: 20729602
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nano zero-valent iron impregnated on titanium dioxide nanotube array film for both oxidation and reduction of methyl orange.
    Yun DM; Cho HH; Jang JW; Park JW
    Water Res; 2013 Apr; 47(5):1858-66. PubMed ID: 23375600
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system.
    Song YY; Schmidt-Stein F; Bauer S; Schmuki P
    J Am Chem Soc; 2009 Apr; 131(12):4230-2. PubMed ID: 19317500
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel solid-state electrochemiluminescence sensor based on Ru(bpy)(3)(2+) immobilization on TiO(2) nanotube arrays and its application for detection of amines in water.
    Xu Z; Yu J
    Nanotechnology; 2010 Jun; 21(24):245501. PubMed ID: 20484789
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays.
    Bauer S; Park J; Faltenbacher J; Berger S; von der Mark K; Schmuki P
    Integr Biol (Camb); 2009 Sep; 1(8-9):525-32. PubMed ID: 20023767
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of operational parameters on electrocoagulation-flotation process followed by photocatalysis applied to the decontamination of water effluents from cellulose and paper factories.
    Boroski M; Rodrigues AC; Garcia JC; Gerola AP; Nozaki J; Hioka N
    J Hazard Mater; 2008 Dec; 160(1):135-41. PubMed ID: 18417286
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bromate formation on the non-porous TiO2 photoanode in the photoelectrocatalytic system.
    Selcuk H; Sarikaya HZ; Bekbolet M; Anderson MA
    Chemosphere; 2006 Feb; 62(5):715-21. PubMed ID: 16005936
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte.
    Ruan C; Paulose M; Varghese OK; Mor GK; Grimes CA
    J Phys Chem B; 2005 Aug; 109(33):15754-9. PubMed ID: 16852999
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combined electrocoagulation and TiO(2) photoassisted treatment applied to wastewater effluents from pharmaceutical and cosmetic industries.
    Boroski M; Rodrigues AC; Garcia JC; Sampaio LC; Nozaki J; Hioka N
    J Hazard Mater; 2009 Feb; 162(1):448-54. PubMed ID: 18573596
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Performance of nano- and nonnano-catalytic electrodes for decontaminating municipal wastewater.
    Chang JH; Yang TJ; Tung CH
    J Hazard Mater; 2009 Apr; 163(1):152-7. PubMed ID: 18657362
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation.
    Hou Y; Li X; Zhao Q; Chen G; Raston CL
    Environ Sci Technol; 2012 Apr; 46(7):4042-50. PubMed ID: 22385264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.