BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19269797)

  • 21. ATR-FTIR spectroscopy reveals bond formation during bacterial adhesion to iron oxide.
    Parikh SJ; Chorover J
    Langmuir; 2006 Sep; 22(20):8492-500. PubMed ID: 16981768
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupled factors influencing the transport and retention of Cryptosporidium parvum oocysts in saturated porous media.
    Kim HN; Walker SL; Bradford SA
    Water Res; 2010 Feb; 44(4):1213-23. PubMed ID: 19854467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes of physical and biochemical properties of Cryptosporidium oocysts with various storage conditions.
    Inoue M; Uga S; Oda T; Rai SK; Vesey G; Hotta H
    Water Res; 2006 Mar; 40(5):881-6. PubMed ID: 16458949
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of lectins on Cryptosporidium parvum oocyst in vitro attachment to host cells.
    Stein B; Stover L; Gillem A; Winters K; Leet JH; Chauret C
    J Parasitol; 2006 Feb; 92(1):1-9. PubMed ID: 16629306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating the Transport of Bacillus subtilis Spores as a Potential Surrogate for Cryptosporidium parvum Oocysts.
    Bradford SA; Kim H; Headd B; Torkzaban S
    Environ Sci Technol; 2016 Feb; 50(3):1295-303. PubMed ID: 26720840
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adsorption of bovine serum albumin (BSA) onto lecithin studied by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy.
    Tantipolphan R; Rades T; McQuillan AJ; Medlicott NJ
    Int J Pharm; 2007 Jun; 337(1-2):40-7. PubMed ID: 17240095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface plasmon resonance-based inhibition assay for real-time detection of Cryptosporidium parvum oocyst.
    Kang CD; Cao C; Lee J; Choi IS; Kim BW; Sim SJ
    Water Res; 2008 Mar; 42(6-7):1693-9. PubMed ID: 17988710
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cryptosporidium parvum oocyst inactivation in field soil and its relation to soil characteristics: analyses using the geographic information systems.
    Kato S; Jenkins M; Fogarty E; Bowman D
    Sci Total Environ; 2004 Apr; 321(1-3):47-58. PubMed ID: 15050384
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrophobic and electrostatic cell surface properties of Cryptosporidium parvum.
    Drozd C; Schwartzbrod J
    Appl Environ Microbiol; 1996 Apr; 62(4):1227-32. PubMed ID: 8919783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An ATR-FTIR study of sulphate sorption on magnetite; rate of adsorption, surface speciation, and effect of calcium ions.
    Roonasi P; Holmgren A
    J Colloid Interface Sci; 2009 May; 333(1):27-32. PubMed ID: 19217117
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of various environmental factors on the viability of Cryptosporidium parvum oocysts.
    Reinoso R; Becares E; Smith HV
    J Appl Microbiol; 2008 Apr; 104(4):980-6. PubMed ID: 17973913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fate of Cryptosporidium parvum oocysts within soil, water, and plant environment.
    McLaughlin SJ; Kalita PK; Kuhlenschmidt MS
    J Environ Manage; 2013 Dec; 131():121-8. PubMed ID: 24157412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preferential adhesion of surface groups of Bacillus subtilis on gibbsite at different ionic strengths and pHs revealed by ATR-FTIR spectroscopy.
    Hong ZN; Jiang J; Li JY; Xu RK
    Colloids Surf B Biointerfaces; 2018 May; 165():83-91. PubMed ID: 29459260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of pretreatment and experimental conditions on electrophoretic mobility and hydrophobicity of Cryptosporidium parvum oocysts.
    Brush CF; Walter MF; Anguish LJ; Ghiorse WC
    Appl Environ Microbiol; 1998 Nov; 64(11):4439-45. PubMed ID: 9797304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of bovine manure on Cryptosporidium parvum oocyst attachment to soil.
    Kuczynska E; Shelton DR; Pachepsky Y
    Appl Environ Microbiol; 2005 Oct; 71(10):6394-7. PubMed ID: 16204565
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting Cryptosporidium parvum capture.
    Wu M; Bridle H; Bradley M
    Water Res; 2012 Apr; 46(6):1715-22. PubMed ID: 22257929
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction force profiles between Cryptosporidium parvum oocysts and silica surfaces.
    Byrd TL; Walz JY
    Environ Sci Technol; 2005 Dec; 39(24):9574-82. PubMed ID: 16475338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transport of Cryptosporidium parvum oocysts in a silicon micromodel.
    Liu Y; Zhang C; Hilpert M; Kuhlenschmidt MS; Kuhlenschmidt TB; Nguyen TH
    Environ Sci Technol; 2012 Feb; 46(3):1471-9. PubMed ID: 22229872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deposition from dopamine solutions at Ge substrates: an in situ ATR-FTIR study.
    Müller M; Kessler B
    Langmuir; 2011 Oct; 27(20):12499-505. PubMed ID: 21866968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cryptosporidium parvum: identification of a new surface adhesion protein on sporozoite and oocyst by screening of a phage-display cDNA library.
    Yao L; Yin J; Zhang X; Liu Q; Li J; Chen L; Zhao Y; Gong P; Liu C
    Exp Parasitol; 2007 Apr; 115(4):333-8. PubMed ID: 17097085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.