These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 19269998)

  • 1. Arabidopsis cold shock domain proteins: relationships to floral and silique development.
    Nakaminami K; Hill K; Perry SE; Sentoku N; Long JA; Karlson DT
    J Exp Bot; 2009; 60(3):1047-62. PubMed ID: 19269998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of AtCSP4 affects late stages of embryo development in Arabidopsis.
    Yang Y; Karlson DT
    J Exp Bot; 2011 Mar; 62(6):2079-91. PubMed ID: 21282328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arabidopsis COLD SHOCK DOMAIN PROTEIN 2 is a negative regulator of cold acclimation.
    Sasaki K; Kim MH; Imai R
    New Phytol; 2013 Apr; 198(1):95-102. PubMed ID: 23323758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An RNA chaperone, AtCSP2, negatively regulates salt stress tolerance.
    Sasaki K; Liu Y; Kim MH; Imai R
    Plant Signal Behav; 2015; 10(8):e1042637. PubMed ID: 26252779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of MADS-box genes during the embryonic phase in Arabidopsis.
    Lehti-Shiu MD; Adamczyk BJ; Fernandez DE
    Plant Mol Biol; 2005 May; 58(1):89-107. PubMed ID: 16028119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis.
    Midhat U; Ting MKY; Teresinski HJ; Snedden WA
    Plant Mol Biol; 2018 Mar; 96(4-5):375-392. PubMed ID: 29372457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis.
    Tao Z; Shen L; Liu C; Liu L; Yan Y; Yu H
    Plant J; 2012 May; 70(4):549-61. PubMed ID: 22268548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chromatin immunoprecipitation (ChIP) approach to isolate genes regulated by AGL15, a MADS domain protein that preferentially accumulates in embryos.
    Wang H; Tang W; Zhu C; Perry SE
    Plant J; 2002 Dec; 32(5):831-43. PubMed ID: 12472697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana.
    Urbanus SL; de Folter S; Shchennikova AV; Kaufmann K; Immink RG; Angenent GC
    BMC Plant Biol; 2009 Jan; 9():5. PubMed ID: 19138429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arabidopsis COLD SHOCK DOMAIN PROTEIN2 is a RNA chaperone that is regulated by cold and developmental signals.
    Sasaki K; Kim MH; Imai R
    Biochem Biophys Res Commun; 2007 Dec; 364(3):633-8. PubMed ID: 17963727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Floral regulators FLC and SOC1 directly regulate expression of the B3-type transcription factor TARGET OF FLC AND SVP 1 at the Arabidopsis shoot apex via antagonistic chromatin modifications.
    Richter R; Kinoshita A; Vincent C; Martinez-Gallegos R; Gao H; van Driel AD; Hyun Y; Mateos JL; Coupland G
    PLoS Genet; 2019 Apr; 15(4):e1008065. PubMed ID: 30946745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The proline biosynthetic genes P5CS1 and P5CS2 play overlapping roles in Arabidopsis flower transition but not in embryo development.
    Mattioli R; Falasca G; Sabatini S; Altamura MM; Costantino P; Trovato M
    Physiol Plant; 2009 Sep; 137(1):72-85. PubMed ID: 19627555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis.
    Liu C; Chen H; Er HL; Soo HM; Kumar PP; Han JH; Liou YC; Yu H
    Development; 2008 Apr; 135(8):1481-91. PubMed ID: 18339670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ULTRAPETALA1 encodes a SAND domain putative transcriptional regulator that controls shoot and floral meristem activity in Arabidopsis.
    Carles CC; Choffnes-Inada D; Reville K; Lertpiriyapong K; Fletcher JC
    Development; 2005 Mar; 132(5):897-911. PubMed ID: 15673576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants.
    Tao Z; Shen L; Gu X; Wang Y; Yu H; He Y
    Nature; 2017 Nov; 551(7678):124-128. PubMed ID: 29072296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Arabidopsis MYB transcription factor gene AtMYB17 and its possible regulation by LEAFY and AGL15.
    Zhang Y; Cao G; Qu LJ; Gu H
    J Genet Genomics; 2009 Feb; 36(2):99-107. PubMed ID: 19232308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower.
    Kaufmann K; MuiƱo JM; Jauregui R; Airoldi CA; Smaczniak C; Krajewski P; Angenent GC
    PLoS Biol; 2009 Apr; 7(4):e1000090. PubMed ID: 19385720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The class III peroxidase PRX17 is a direct target of the MADS-box transcription factor AGAMOUS-LIKE15 (AGL15) and participates in lignified tissue formation.
    Cosio C; Ranocha P; Francoz E; Burlat V; Zheng Y; Perry SE; Ripoll JJ; Yanofsky M; Dunand C
    New Phytol; 2017 Jan; 213(1):250-263. PubMed ID: 27513887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC.
    Seo E; Lee H; Jeon J; Park H; Kim J; Noh YS; Lee I
    Plant Cell; 2009 Oct; 21(10):3185-97. PubMed ID: 19825833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SWP73 Subunits of Arabidopsis SWI/SNF Chromatin Remodeling Complexes Play Distinct Roles in Leaf and Flower Development.
    Sacharowski SP; Gratkowska DM; Sarnowska EA; Kondrak P; Jancewicz I; Porri A; Bucior E; Rolicka AT; Franzen R; Kowalczyk J; Pawlikowska K; Huettel B; Torti S; Schmelzer E; Coupland G; Jerzmanowski A; Koncz C; Sarnowski TJ
    Plant Cell; 2015 Jul; 27(7):1889-906. PubMed ID: 26106148
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.