BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 19270175)

  • 1. The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center.
    Wei Z; Yaguchi J; Yaguchi S; Angerer RC; Angerer LM
    Development; 2009 Apr; 136(7):1179-89. PubMed ID: 19270175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An anterior signaling center patterns and sizes the anterior neuroectoderm of the sea urchin embryo.
    Range RC; Wei Z
    Development; 2016 May; 143(9):1523-33. PubMed ID: 26952978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of canonical and noncanonical Wnt signaling pathways patterns the neuroectoderm along the anterior-posterior axis of sea urchin embryos.
    Range RC; Angerer RC; Angerer LM
    PLoS Biol; 2013; 11(1):e1001467. PubMed ID: 23335859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specification of ectoderm restricts the size of the animal plate and patterns neurogenesis in sea urchin embryos.
    Yaguchi S; Yaguchi J; Burke RD
    Development; 2006 Jun; 133(12):2337-46. PubMed ID: 16687447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axial patterning interactions in the sea urchin embryo: suppression of nodal by Wnt1 signaling.
    Wei Z; Range R; Angerer R; Angerer L
    Development; 2012 May; 139(9):1662-9. PubMed ID: 22438568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurogenic gene regulatory pathways in the sea urchin embryo.
    Wei Z; Angerer LM; Angerer RC
    Development; 2016 Jan; 143(2):298-305. PubMed ID: 26657764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene regulatory network for neurogenesis in a sea star embryo connects broad neural specification and localized patterning.
    Yankura KA; Koechlein CS; Cryan AF; Cheatle A; Hinman VF
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8591-6. PubMed ID: 23650356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct and indirect control of oral ectoderm regulatory gene expression by Nodal signaling in the sea urchin embryo.
    Li E; Materna SC; Davidson EH
    Dev Biol; 2012 Sep; 369(2):377-85. PubMed ID: 22771578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the aboral domain in Nematostella requires β-catenin and the opposing activities of Six3/6 and Frizzled5/8.
    Leclère L; Bause M; Sinigaglia C; Steger J; Rentzsch F
    Development; 2016 May; 143(10):1766-77. PubMed ID: 26989171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
    Bergeron KF; Xu X; Brandhorst BP
    Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative Wnt-Nodal Signals Regulate the Patterning of Anterior Neuroectoderm.
    Yaguchi J; Takeda N; Inaba K; Yaguchi S
    PLoS Genet; 2016 Apr; 12(4):e1006001. PubMed ID: 27101101
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ankAT-1 is a novel gene mediating the apical tuft formation in the sea urchin embryo.
    Yaguchi S; Yaguchi J; Wei Z; Shiba K; Angerer LM; Inaba K
    Dev Biol; 2010 Dec; 348(1):67-75. PubMed ID: 20875818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heads or tails? Amphioxus and the evolution of anterior-posterior patterning in deuterostomes.
    Holland LZ
    Dev Biol; 2002 Jan; 241(2):209-28. PubMed ID: 11784106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
    Duboc V; Röttinger E; Besnardeau L; Lepage T
    Dev Cell; 2004 Mar; 6(3):397-410. PubMed ID: 15030762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos.
    Yaguchi S; Yaguchi J; Angerer RC; Angerer LM
    Dev Cell; 2008 Jan; 14(1):97-107. PubMed ID: 18194656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin.
    Pieplow A; Dastaw M; Sakuma T; Sakamoto N; Yamamoto T; Yajima M; Oulhen N; Wessel GM
    Dev Biol; 2021 Apr; 472():85-97. PubMed ID: 33482173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus.
    Tsironis I; Paganos P; Gouvi G; Tsimpos P; Stamopoulou A; Arnone MI; Flytzanis CN
    Dev Biol; 2021 Jul; 475():131-144. PubMed ID: 33484706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Six3 inactivation causes progressive caudalization and aberrant patterning of the mammalian diencephalon.
    Lavado A; Lagutin OV; Oliver G
    Development; 2008 Feb; 135(3):441-50. PubMed ID: 18094027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.