These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 19270725)

  • 1. c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells.
    Shiue CN; Berkson RG; Wright AP
    Oncogene; 2009 Apr; 28(16):1833-42. PubMed ID: 19270725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription.
    Arabi A; Wu S; Ridderstråle K; Bierhoff H; Shiue C; Fatyol K; Fahlén S; Hydbring P; Söderberg O; Grummt I; Larsson LG; Wright AP
    Nat Cell Biol; 2005 Mar; 7(3):303-10. PubMed ID: 15723053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I.
    Grandori C; Gomez-Roman N; Felton-Edkins ZA; Ngouenet C; Galloway DA; Eisenman RN; White RJ
    Nat Cell Biol; 2005 Mar; 7(3):311-8. PubMed ID: 15723054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S6 Kinase is essential for MYC-dependent rDNA transcription in Drosophila.
    Mitchell NC; Tchoubrieva EB; Chahal A; Woods S; Lee A; Lin JI; Parsons L; Jastrzebski K; Poortinga G; Hannan KM; Pearson RB; Hannan RD; Quinn LM
    Cell Signal; 2015 Oct; 27(10):2045-53. PubMed ID: 26215099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myc-induced anchorage of the rDNA IGS region to nucleolar matrix modulates growth-stimulated changes in higher-order rDNA architecture.
    Shiue CN; Nematollahi-Mahani A; Wright AP
    Nucleic Acids Res; 2014 May; 42(9):5505-17. PubMed ID: 24609384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleolar organization, growth control and cancer.
    Shiue CN; Arabi A; Wright AP
    Epigenetics; 2010 Apr; 5(3):200-5. PubMed ID: 20305389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation.
    Poortinga G; Hannan KM; Snelling H; Walkley CR; Jenkins A; Sharkey K; Wall M; Brandenburger Y; Palatsides M; Pearson RB; McArthur GA; Hannan RD
    EMBO J; 2004 Aug; 23(16):3325-35. PubMed ID: 15282543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. c-Myc creates an activation loop by transcriptionally repressing its own functional inhibitor, hMad4, in young fibroblasts, a loop lost in replicatively senescent fibroblasts.
    Marcotte R; Chen JM; Huard S; Wang E
    J Cell Biochem; 2005 Dec; 96(5):1071-85. PubMed ID: 16167342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a cancer-specific switch at the CDK4 promoter with loss of control by both USF and c-Myc.
    Pawar SA; Szentirmay MN; Hermeking H; Sawadogo M
    Oncogene; 2004 Aug; 23(36):6125-35. PubMed ID: 15208653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of human ornithine decarboxylase expression following prolonged quiescence: role for the c-Myc/Max protein complex.
    Peña A; Wu S; Hickok NJ; Soprano DR; Soprano KJ
    J Cell Physiol; 1995 Feb; 162(2):234-45. PubMed ID: 7822433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repression of transcription of the p27(Kip1) cyclin-dependent kinase inhibitor gene by c-Myc.
    Yang W; Shen J; Wu M; Arsura M; FitzGerald M; Suldan Z; Kim DW; Hofmann CS; Pianetti S; Romieu-Mourez R; Freedman LP; Sonenshein GE
    Oncogene; 2001 Mar; 20(14):1688-702. PubMed ID: 11313917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of ornithine decarboxylase by IL-3 is mediated by sequential c-Myc-independent and c-Myc-dependent pathways.
    Packham G; Cleveland JL
    Oncogene; 1997 Sep; 15(10):1219-32. PubMed ID: 9294616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of AP-1 transcription activator induces myc-dependent apoptosis in HL60 cells.
    Park S; Hahm ER; Lee DK; Yang CH
    J Cell Biochem; 2004 Apr; 91(5):973-86. PubMed ID: 15034932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of c-Myc activity by ribosomal protein L11.
    Dai MS; Arnold H; Sun XX; Sears R; Lu H
    EMBO J; 2007 Jul; 26(14):3332-45. PubMed ID: 17599065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual control of myc expression through a single DNA binding site targeted by ets family proteins and E2F-1.
    Roussel MF; Davis JN; Cleveland JL; Ghysdael J; Hiebert SW
    Oncogene; 1994 Feb; 9(2):405-15. PubMed ID: 8290253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myc-Max heterodimers activate a DEAD box gene and interact with multiple E box-related sites in vivo.
    Grandori C; Mac J; Siëbelt F; Ayer DE; Eisenman RN
    EMBO J; 1996 Aug; 15(16):4344-57. PubMed ID: 8861962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid-dependent signaling via S6K1 and MYC is essential for regulation of rDNA transcription.
    Kang J; Kusnadi EP; Ogden AJ; Hicks RJ; Bammert L; Kutay U; Hung S; Sanij E; Hannan RD; Hannan KM; Pearson RB
    Oncotarget; 2016 Aug; 7(31):48887-48904. PubMed ID: 27385002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct role for Myc in transcription initiation mediated by interactions with TFII-I.
    Roy AL; Carruthers C; Gutjahr T; Roeder RG
    Nature; 1993 Sep; 365(6444):359-61. PubMed ID: 8377829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A genome-wide screen for beta-catenin binding sites identifies a downstream enhancer element that controls c-Myc gene expression.
    Yochum GS; Cleland R; Goodman RH
    Mol Cell Biol; 2008 Dec; 28(24):7368-79. PubMed ID: 18852287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. c-Myc represses the proximal promoters of GADD45a and GADD153 by a post-RNA polymerase II recruitment mechanism.
    Barsyte-Lovejoy D; Mao DY; Penn LZ
    Oncogene; 2004 Apr; 23(19):3481-6. PubMed ID: 15021909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.