These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 19271477)
21. Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field. Chen H; Li X; Wan M Ultrason Sonochem; 2006 Sep; 13(6):480-6. PubMed ID: 16571378 [TBL] [Abstract][Full Text] [Related]
22. Spectroscopic measurement of electronic temperature in the bubbles during single- and multibubble sonoluminescence of metal carbonyl solutions and nanodispersed suspensions. Sharipov GL; Gareev BM; Abdrakhmanov AM Ultrason Sonochem; 2019 Mar; 51():178-181. PubMed ID: 30381144 [TBL] [Abstract][Full Text] [Related]
23. The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. Yasui K; Tuziuti T; Lee J; Kozuka T; Towata A; Iida Y J Chem Phys; 2008 May; 128(18):184705. PubMed ID: 18532834 [TBL] [Abstract][Full Text] [Related]
24. Acoustic cavitation, bubble dynamics and sonoluminescence. Lauterborn W; Kurz T; Geisler R; Schanz D; Lindau O Ultrason Sonochem; 2007 Apr; 14(4):484-91. PubMed ID: 17254826 [TBL] [Abstract][Full Text] [Related]
25. A correlation between cavitation bubble temperature, sonoluminescence and interfacial chemistry - A minireview. Yusof NSM; Anandan S; Sivashanmugam P; Flores EMM; Ashokkumar M Ultrason Sonochem; 2022 Apr; 85():105988. PubMed ID: 35344863 [TBL] [Abstract][Full Text] [Related]
26. Characterization of stable and transient cavitation bubbles in a milliflow reactor using a multibubble sonoluminescence quenching technique. Gielen B; Jordens J; Janssen J; Pfeiffer H; Wevers M; Thomassen LC; Braeken L; Van Gerven T Ultrason Sonochem; 2015 Jul; 25():31-9. PubMed ID: 25218768 [TBL] [Abstract][Full Text] [Related]
27. Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Suslick KS; Flannigan DJ Annu Rev Phys Chem; 2008; 59():659-83. PubMed ID: 18393682 [TBL] [Abstract][Full Text] [Related]
28. Sonoluminescence, sonochemistry (H2O2 yield) and bubble dynamics: frequency and power effects. Kanthale P; Ashokkumar M; Grieser F Ultrason Sonochem; 2008 Feb; 15(2):143-50. PubMed ID: 17462939 [TBL] [Abstract][Full Text] [Related]
29. 100-Watt sonoluminescence generated by 2.5-atmosphere-pressure pulses. Kappus B; Khalid S; Putterman S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056304. PubMed ID: 21728644 [TBL] [Abstract][Full Text] [Related]
30. The Rayleigh-like collapse of a conical bubble. Leighton TG; Cox BT; Phelps AD J Acoust Soc Am; 2000 Jan; 107(1):130-42. PubMed ID: 10641626 [TBL] [Abstract][Full Text] [Related]
31. Resolving the shape of a sonoluminescence pulse in sulfuric acid by the use of streak camera. Huang W; Chen W; Cui W J Acoust Soc Am; 2009 Jun; 125(6):3597-600. PubMed ID: 19507941 [TBL] [Abstract][Full Text] [Related]
32. Estimation of ultrasound induced cavitation bubble temperatures in aqueous solutions. Rae J; Ashokkumar M; Eulaerts O; von Sonntag C; Reisse J; Grieser F Ultrason Sonochem; 2005 Apr; 12(5):325-9. PubMed ID: 15590304 [TBL] [Abstract][Full Text] [Related]
33. The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm(-1): new observations and exhaustive review. Campargue A; Barbe A; De Backer-Barilly MR; Tyuterev VG; Kassi S Phys Chem Chem Phys; 2008 May; 10(20):2925-46. PubMed ID: 18473041 [TBL] [Abstract][Full Text] [Related]
34. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Brujan EA; Ikeda T; Matsumoto Y Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873 [TBL] [Abstract][Full Text] [Related]
36. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water. Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993 [TBL] [Abstract][Full Text] [Related]
37. The origin of isotope effects in sonoluminescence spectra of heavy and light water. Ndiaye AA; Pflieger R; Siboulet B; Nikitenko SI Angew Chem Int Ed Engl; 2013 Feb; 52(9):2478-81. PubMed ID: 23355372 [TBL] [Abstract][Full Text] [Related]
38. Luminescence and Raman spectra of acetylacetone at low temperatures. Mohacek-Grosev V; Furić K; Ivanković H J Phys Chem A; 2007 Jul; 111(26):5820-7. PubMed ID: 17566988 [TBL] [Abstract][Full Text] [Related]
39. The dependence of the moving sonoluminescing bubble trajectory on the driving pressure. Sadighi-Bonabi R; Rezaei-Nasirabad R; Galavani Z J Acoust Soc Am; 2009 Nov; 126(5):2266-72. PubMed ID: 19894808 [TBL] [Abstract][Full Text] [Related]