These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19271977)

  • 1. Accelerated degradation of metam-sodium in soil and consequences for root-disease management.
    Triky-Dotan S; Austerweil M; Steiner B; Peretz-Alon Y; Katan J; Gamliel A
    Phytopathology; 2009 Apr; 99(4):362-8. PubMed ID: 19271977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial aspects of accelerated degradation of metam sodium in soil.
    Triky-Dotan S; Ofek M; Austerweil M; Steiner B; Minz D; Katan J; Gamliel A
    Phytopathology; 2010 Apr; 100(4):367-75. PubMed ID: 20205540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior of methyl isothiocyanate in soils under field conditions in Morocco.
    El Hadiri N; Ammati M; Chgoura M; Mounir K
    Chemosphere; 2003 Aug; 52(5):927-32. PubMed ID: 12757794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of methyl isothiocyanate and chloropicrin in forest nursery soils.
    Zhang Y; Spokas K; Wang D
    J Environ Qual; 2005; 34(5):1566-72. PubMed ID: 16091609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling methyl isothiocyanate soil flux and emission ratio from a field following a chemigation of metam-sodium.
    Li LY; Barry T; Mongar K; Wofford P
    J Environ Qual; 2006; 35(3):707-13. PubMed ID: 16585612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface water seal application to minimize volatilization loss of methyl isothiocyanate from soil columns.
    Simpson CR; Nelson SD; Stratmann JE; Ajwa HA
    Pest Manag Sci; 2010 Jun; 66(6):686-92. PubMed ID: 20232287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation and Dissipation of Methyl Isothiocyanate in Soils Following Metam Sodium Fumigation: Impact on Verticillium Control and Potato Yield.
    Triky-Dotan S; Austerweil M; Steiner B; Peretz-Alon Y; Katan J; Gamliel A
    Plant Dis; 2007 May; 91(5):497-503. PubMed ID: 30780692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of application methods of metam sodium and plastic covers on horizontal and vertical distributions of methyl isothiocyanate in bedded field plots.
    Ou LT; Thomas JE; Allen LH; Vu JC; Dickson DW
    Arch Environ Contam Toxicol; 2006 Aug; 51(2):164-73. PubMed ID: 16583255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of methyl isothiocyanate in air downwind of fields treated with metam-sodium by subsurface drip irrigation.
    Woodrow JE; Seiber JN; LeNoir JS; Krieger RI
    J Agric Food Chem; 2008 Aug; 56(16):7373-8. PubMed ID: 18680300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fumigant distribution in forest nursery soils under water seal and plastic film after application of dazomet, metam-sodium and chloropicrin.
    Wang D; Fraedrich SW; Juzwik J; Spokas K; Zhang Y; Koskinen WC
    Pest Manag Sci; 2006 Mar; 62(3):263-73. PubMed ID: 16475238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The crucial role of calcium interacting with soil pH in enhanced biodegradation of metam-sodium.
    Warton B; Matthiessen JN
    Pest Manag Sci; 2005 Sep; 61(9):856-62. PubMed ID: 16010663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of metam sodium on soil respiration.
    Riffaldi R; Filippelli M; Levi-Minzi R; Saviozzi A
    J Environ Sci Health B; 2000 Jul; 35(4):455-65. PubMed ID: 10874622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of field methyl isothiocyanate flux following Pacific Northwest surface-applied and ground-incorporated fumigation practices.
    Littke MH; LePage J; Sullivan DA; Hebert VR
    Pest Manag Sci; 2013 May; 69(5):620-6. PubMed ID: 23074019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose Response of Weed Seeds, Plant-Parasitic Nematodes, and Pathogens to Twelve Rates of Metam Sodium in a California Soil.
    Klose S; Ajwa HA; Browne GT; Subbarao KV; Martin FN; Fennimore SA; Westerdahl BB
    Plant Dis; 2008 Nov; 92(11):1537-1546. PubMed ID: 30764440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation of chloropicrin and 1,3-dichloropropene by metam sodium in a combined application of fumigants.
    Zheng W; Yates SR; Guo M; Papiernik SK; Kim JH
    J Agric Food Chem; 2004 May; 52(10):3002-9. PubMed ID: 15137846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metam sodium intoxication: the specific role of degradation products--methyl isothiocyanate and carbon disulphide--as a function of exposure.
    Bretaudeau Deguigne M; Lagarce L; Boels D; Harry P
    Clin Toxicol (Phila); 2011 Jun; 49(5):416-22. PubMed ID: 21740140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution and efficacy of drip-applied metam-sodium against the survival of Rhizoctonia solani and yellow nutsedge in plastic-mulched sandy soil beds.
    Candole BL; Csinos AS; Wang D
    Pest Manag Sci; 2007 May; 63(5):468-75. PubMed ID: 17397113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of application timing and method on efficacy and phytotoxicity of 1,3-D, chloropicrin and metam-sodium combinations in squash plasticulture.
    Desaeger JA; Seebold KW; Csinos AS
    Pest Manag Sci; 2008 Mar; 64(3):230-8. PubMed ID: 18181144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of methyl isothiocyanate air concentrations associated with community illnesses following a metam-sodium sprinkler application.
    O'Malley M; Barry T; Verder-Carlos M; Rubin A
    Am J Ind Med; 2004 Jul; 46(1):1-15. PubMed ID: 15202120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emission, distribution and leaching of methyl isothiocyanate and chloropicrin under different surface containments.
    Zhang Y; Wang D
    Chemosphere; 2007 Jun; 68(3):445-54. PubMed ID: 17289109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.