These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 19272241)

  • 1. Physiological effects of a modification of the construction of impermeable protective clothing.
    Marszałek A; Bartkowiak G; Lezak K
    Int J Occup Saf Ergon; 2009; 15(1):61-73. PubMed ID: 19272241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of heat stress on physiological factors for industrial workers performing routine work and wearing impermeable vapor-barrier clothing.
    Mihal CP
    Am Ind Hyg Assoc J; 1981 Feb; 42(2):97-103. PubMed ID: 7234683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can the PHS model (ISO7933) predict reasonable thermophysiological responses while wearing protective clothing in hot environments?
    Wang F; Kuklane K; Gao C; Holmér I
    Physiol Meas; 2011 Feb; 32(2):239-49. PubMed ID: 21178244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Body temperatures in relation to heart rate for workers wearing impermeable clothing in a hot environment.
    Tanaka M; Brisson GR; Volle MA
    Am Ind Hyg Assoc J; 1978 Nov; 39(11):885-90. PubMed ID: 736000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat strain while wearing the current Canadian or a new hot-weather French NBC protective clothing ensemble.
    McLellan TM
    Aviat Space Environ Med; 1996 Nov; 67(11):1057-62. PubMed ID: 8908344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of clothing layers in combination with fire fighting personal protective clothing on physiological and perceptual responses to intermittent work and on materials performance test results.
    Smith DL; Haller JM; Hultquist EM; Lefferts WK; Fehling PC
    J Occup Environ Hyg; 2013; 10(5):259-69. PubMed ID: 23472953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the effectiveness of modular clothing protecting against the cold based on physiological tests.
    Marszałek A; Bartkowiak G; Dąbrowska A
    Int J Occup Saf Ergon; 2018 Dec; 24(4):534-545. PubMed ID: 28925331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Methodic approaches to evaluation of microclimate at workplace, with application of various types of protective clothing against occupational hazards].
    Prokopenko LV; Afanas'eva RF; Bessonova NA; Burmistrova OV; Losik TK; Konstantinov EI
    Med Tr Prom Ekol; 2013; (4):10-8. PubMed ID: 24006619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal and cardiovascular strain imposed by motorcycle protective clothing under Australian summer conditions.
    de Rome L; Taylor EA; Croft RJ; Brown J; Fitzharris M; Taylor NA
    Ergonomics; 2016 Apr; 59(4):504-13. PubMed ID: 26280297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occupational needs and evaluation methods for cold protective clothing.
    Anttonen H
    Arctic Med Res; 1993; 52 Suppl 9():1-76. PubMed ID: 8048995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of thermal environment and chemical protective clothing on work tolerance, physiological responses, and subjective ratings.
    White MK; Hodous TK; Vercruyssen M
    Ergonomics; 1991 Apr; 34(4):445-57. PubMed ID: 1860463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological evaluation of chemical protective suit systems (CPSS) in hot conditions.
    Ilmarinen R; Lindholm H; Koivistoinen K; Helistén P
    Int J Occup Saf Ergon; 2004; 10(3):215-26. PubMed ID: 15377406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Work performance at 40 degrees C with Canadian Forces biological and chemical protective clothing.
    McLellan TM
    Aviat Space Environ Med; 1993 Dec; 64(12):1094-100. PubMed ID: 8291988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-environment changes inside impermeable protective clothing during a continuous work exposure.
    Muir IH; Bishop PA; Kozusko J
    Ergonomics; 2001 Sep; 44(11):953-61. PubMed ID: 11693246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of the physiological response of humans wearing protective clothing using a thermophysiological human simulator.
    Psikuta A; Wang LC; Rossi RM
    J Occup Environ Hyg; 2013; 10(4):222-32. PubMed ID: 23442180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal strain resulting from protective clothing of an armored vehicle crew in warm conditions.
    Henane R; Bittel J; Viret R; Morino S
    Aviat Space Environ Med; 1979 Jun; 50(6):599-603. PubMed ID: 475709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An empirical analysis of thermal protective performance of fabrics used in protective clothing.
    Mandal S; Song G
    Ann Occup Hyg; 2014 Oct; 58(8):1065-77. PubMed ID: 25135076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of air permeability characteristics of protective garments on the induced physiological strain under exercise-heat stress.
    Epstein Y; Heled Y; Ketko I; Muginshtein J; Yanovich R; Druyan A; Moran DS
    Ann Occup Hyg; 2013 Aug; 57(7):866-74. PubMed ID: 23378525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A survey on physiological strains of asbestos abatement work wearing protective clothing in summer].
    Tochihara Y; Ohnaka T; Nagai Y; Muramatsu T
    Ann Physiol Anthropol; 1993 Jan; 12(1):31-8. PubMed ID: 8507292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of anti-heat stress clothing for construction workers in hot and humid weather.
    Chan AP; Guo YP; Wong FK; Li Y; Sun S; Han X
    Ergonomics; 2016 Apr; 59(4):479-95. PubMed ID: 26399956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.